Towards Dependability-aware Design of Hardware Systems using extended Program State Machines

Grüttner, Kim and Herrholz, Andreas and Kühne, Ulrich and Große, Daniel and Rettberg, Achim and Nebel, Wolfgang and Drechsler, Rolf
Due to the continuous shrinking of the transistorsizes which is strongly driven by Moore’s law, reliability becomes a dominant design challenge for embedded systems. Reliability problems arise from permanent errors due to manufacturing, process variations, aging as well as soft errors. As a result, the hardware will consist of unreliable components and hence, the development of embedded systems has to change fundamentally.Therefore, we propose a dependability-aware design approach for hardware systems through integrating dependability into a state-of-the-art system-level design language. Our approachis based on SystemC and extends the Program State Machine model to explicitly observe, diagnose, and compensate faulty behavior. Different compensation mechanisms like run-time reconfiguration or mechanisms for error propagation can be usedby the designer during refinement. They are controlled by a new exception-like mechanism. Furthermore, our approach aims to integrate functional verification as well as dependabilityverification with respect to given fault models.
03 / 2011
In conjunction with 14th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing
COdesign and power Management in PLatform-based design space EXploration