Towards a Rigorous Modeling Formalism for Systems of Systems

Gezgin, Tayfun and Etzien Christoph and Henkler, Stefan, Rettberg, Achim
The scope of this paper is collaborative, distributed safety critical systems which build up a larger scale system of systems (SoS). Systems participating in an SoS follow both global as well as individual goals, which may be contradicting. Both the global and local goals of the overall SoS may change over time. Hence, self-adaptiveness, i.e., reconfiguration of the SoS as a reaction on changes within its context is a major characteristic of this systems. The aim of this paper is to describe first steps towards a modeling formalism for SoS in a safety critical context. The challenge is to address on the one hand the required flexibility to adapt the system during run-time and on the other hand to guarantee that the system reacts still in a safe manner. To address these challenges, we propose an approach which guarantees that the system still reacts in a safe manner while adaption to uncertainty including context changes. This adaption has to be assumed as unsafe during design time. The key for having success is to define the interaction between the systems as well as its goals as basic elements of the design. Based on our former work, we propose a well-defined modeling approach for the interaction based on components as basic structural elements, the contract paradigm for the design of the interaction, and graph transformations, which addresses the adaptivity of system of systems. The component model is additionally explicitly enriched by goals, which supports so called evaluation functions to determine the level of target achievement.
04 / 2012
Designing for Adaptability and evolutioN in System of systems Engineering

OFFIS Autoren