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1. Introduction 

In our modern world, we need more sustainable solution in 
all areas of modern life. One important sector regarding green 
house gas emission is Manufacturing / Construction that 
accounted to approximately 13% of all world CO2 equivalents 
emissions in 2021 [1]. This paper focusses on the 
manufacturing sector. It has a big influence on the everyday life 
of every human as products surround us all. The design of 
products has a big influence on the manufacturing sector. If 
products are designed more sustainably, the manufacturing 
emissions should decrease as well. Furthermore, if products are 
designed in such a way that they are repairable and/or last 
longer, the emissions from the manufacturing sector should 
decrease as well – at least in the long run. 

The sources for this knowledge and all the sustainability 
KPIs is the Life Cycle Assessment (LCA), which models the 
whole production process of the product. However, in order to 
model the whole process a lot of reference data is necessary. 
This is very important to ensure that the model fits the 

application and to ensure that the results are realistic. The 
challenge arises that not all data is available in the Ecoinvent 
database or that the data available is incomplete. Hence, models 
have to be built on available data and might not be accurate. 
This paper aims to help mitigate this challenge by studying how 
good matrix completion algorithms work for LCA data. This is 
relevant due to the unique structure of LCA data. The research 
questions are defined as follows: 

RQ1: How well do different matrix completion algorithms 
work for the unique structure of LCA data?

RQ2: Where is the threshold for missing entries so that the 
results are still reasonably good?

To study these research questions, a data set of professional 
data centers [2] was selected. The dataset is described in section 
3. 

2. Literature Review

Matrix completion is a well-known area of research for quite a 
long time [3]. Next to classical approaches that use properties 
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of matrices to fill in missing information the Netflix problem 
brought new algorithms to fruition and sparked the use of deep 
learning algorithms in this field. Using matrix completion in 
the LCA promises many advantages. When modelling a 
product, not all data needed is always available. Then, data 
from the literature needs to be used to fill in the gaps, which is 
a time consuming process. However, the data that is available 
in databases like Ecoinvent, might not fit the application very 
well. For this, the matrix completion algorithm could be used 
to fill in the gaps in the data. 

A research gap was identified in the area of completing 
missing data in life cycle assessments (LCA). This gap is 
particularly pronounced for LCA data that relate to server 
components. The majority of the studies analyzed focus on 
completing missing data within the Ecoinvent database, which 
plays a central role in conducting life cycle assessments [4]. To 
the best of our knowledge, only the following papers exist in 
this area. 

In their paper, Fangfang et al. [5] present two approaches for 
estimating missing information in LCA and input-output 
analysis. Both approaches are based on the assumption that the 
data used in the analysis have a low-rank or almost low-rank 
structure due to their similar data structures [6] and input ratios. 
Based on this assumption, the authors used matrix completion 
techniques to reconstruct the missing data. Two non-negative 
matrix completion models were presented, which are based on 
the use of Alternating Direction Method of Multipliers 
(ADMM). The results indicate the usefulness of the methods 
used on the data that represent different production processes 
and their input-output relationships. Cai [7] focused in his work 
on the completion of LCI data, which also come from the 
Ecoinvent database. Data was used that contains information 
on various environmental inputs and outputs of industrial 
processes, such as material and energy consumption as well as 
emissions linked to the processes. To complete missing data, a 
similarity-based link prediction procedure was used, among 
other things. In addition, the author estimated missing values 
based on weighted similarity metrics. Canals et al. [8] used 
different approaches to fulfil gaps in LCA Data of bio-based 
products. In their paper they described the use of proxy data, a 
method where similar data of a product is used to estimate 
another. Also averaged proxies where the average of several 
similar products or scaled data where used to fill the gaps. 
Furthermore, data was extrapolated by adapting existing 
datasets to new products by changing parameters, such as 
production methods or regional characteristics. Zhang et al. [6]
applied methods like Singular Value Thresholding (SVT) and 
Factor Group-Sparce Regularization (FGSR) to complete data 
in realtime. The examined data originates from a specific part 
of a distillation unit of a refinery. Imputed values were based 
on values of temperature, pressure and flow rate data. Results 
are showing a superior accuracy compared to traditional MC 
methods. Saad et al. [9] used an approach based on decision 
trees to close gaps in LCI data of the Ecoinvent database. The 
paper is focusing on GHG emissions in the manufacturing 
process of products. Models like Gradient Boosting showed 
high accuracy in prediction emissions.

Summarizing, in some of the papers presented above [6, 7,
9], the error is still remains relatively substantial, especially for 
small datasets. This makes these algorithms useful when the 
alternative is not having any data. However, the results have to 
be checked for plausibility in each case, which makes the 
process tedious. One possible reason could be outliers in the 
data that are not treated. The usage of robust pre-processing 
methods or robust matrix completion algorithms can be a 
solution. However, we found very few papers using robust 
matrix completion methods in LCA data to deal with impulsive 
noise or outliers like Wen et al. [10]  or Fangfang et al. [5]

In this paper, we aim to close this research gap by analyzing 
matrix completion algorithms and deep learning algorithms 
with robust preprocessing for the specific field of datacenters. 

3. TEMPRO Dataset

The data used for this is the dataset is the results of the 
project TEMPRO: Total Energy Management for Professional 
Data Centers”. This project analyzed the components of 
professional data centers to construct updated models for LCA. 
Additionally, recycling scenarios for different key material 

Figure 1: Comparison of result uncertainty values (after laboratory 
measurements) for PCBs. Literature data from ecoinvent 3.4 data 
was compared with own lab analyses of PCB samples (Source: 
PhD Dissertation Penaherrera, 2024)
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were developed. Data on PCB components was extracted and 
analyzed. This ensures that the dataset is more accurate than 
data from literature and is highlighted in Figure .  

The analysis of inventories at different granularity levels 
allows Material Flow Analysis to be conducted for the stages 
of the lifecycle. In addition, the use of Monte Carlo analysis 
paired with data quality and inventory uncertainty evaluation 
allows evaluating the quality of the results, and to evaluate the
improvements on said quality obtained. A complete separate 
database with products built only based on reference ecological 
databases was constructed in Penaherera [2] to quantify the 
improvements achieved through the incorporation of data from 
laboratory analysis. While a clear improvement can be 
observed in the material-related indicators at the resource 
accounting. This reflects the methodologies for construction of 
such indicators and shows the effects of incorporating more 
material flows and higher quantities of material use for 
manufacturing of electronic components. Reporting of the 
uncertainty increases in general the quality of any LCA study, 
with a full quantitative uncertainty assessment giving high 
transparency on the quality of the results provided.

By using a variety of indicators for evaluation, this work 
presents novel insights on material depletion and on energy use 
for various products, whose high specific critical material 
content make them of relevance for urban mining and for 
securing secondary material sources. Additionally, the use of 
Monte Carlo simulations paired with data quality to evaluate 
the results is a procedure not commonly observed within LCA 
studies, mostly due to time and to computer resource 
constraints. This last evaluation provided an insight on 
methodologies for evaluation of results quality and on the 
improvement of said quality, while also providing a basis for 
studying interdependences of indicators. However, limitations 
on the methodology are reflected when evaluating the 
distribution of the results. Therefore, this research will be 
continued in combination with the matrix completion. 

The modeling of recycling and the evaluation of the results 
of each scenario was done using LCA of the product, material 
flow analysis, and evaluation of recycling processes. Recycling 
is modeled in two main steps: Pretreatment and metal recovery. 

Many metals are concentrated on certain parts of the WEEE
(Waste from Electrical and Electronic Equipment)
components. Pretreatment has the goal of separating different 
portions with concentration of a specific metal or metal family. 
Disassembly of these parts is the most time-consuming 
operation. Automatic, semiautomatic, and manual disassembly 
systems have been developed, the latter being the most adopted 
technique. The recovery efficiency by manual treatment is a lot 
higher than that of automatic systems. Manual sorting and 
dismantling are economically unfeasible in developed 
economies. 

Several pretreatment processes where considered to develop 
models and scenarios, where the main difference lies on the 
amount of material loss in each pretreatment chain. 

Pretreatment processes considered are manual sorting and 
dismantling, multilevel deep manual dismantling (which 
includes manual separation of soldered components such as

integrated circuits), mechanical/automated sorting and 
separation, or a combination of both. 

After pretreatment, four material recovery processes were 
evaluated. Pyrometalurgical recovery, the most widely used 
process in industry, involves the use of elevated temperature 
process to extract metals. Hydrometallurgical recycling uses 
techniques to leach metals into solutions during reactions with 
leachants and oxidants. Products are afterward separated and 
purified. Electrochemical recovery involves separation of base 
metals and precious metal containing fractions. It has the 
advantage of a lower use of chemical agents. Biometallurgical 
processes use special microbes for metal extraction, with an 
emphasis on recovery of copper and gold. 

The part of the dataset that is used contains multiple levels: 
different data centers, their systems (e.g. climatization, server 
room, server rack), their devices (e.g. server 1U, storage or 
power distribution unit), their different parts (e.g. CPU, HDD, 
Mainboard). Moreover, models for the production of their 
constituent materials were developed. Therefore, there are four 
levels of data in this dataset. Data centers contain very different 
parts and outliers are present. We are investigating the 
influence of these outliers in section 5. For the whole dataset, 
172 different components are used.

From the models, different impacts were calculated using 
different methodologies [2]. From this, the following six LCA 
KPIs (key performance indicators) have been selected:
Greenhouse gas emissions [kgCO2e], ReCiPe-Total Impacts, 
Geo-Political Supply Risk, ADP – Economic Importance [kg 
Sb-eq], Primary Exergy Demand [MJ-eq], and Primary Energy 
Demand [MJ-eq]. 

Thus, a four-dimensional dataset, a data cube, is created
with the four dimensions as follows: (1) One dimension 
contains the components of the datacenters with the levels 
described above. (2) One dimension captures the recycling 
scenarios, (3) the next the sorting scenarios. (4) The last 
dimension contains the six LCA KPIs. 

The term 'dimensionality' refers here to the structural 
arrangement of the data in terms of axes within the matrix. In 

dimensionality reduction, it however refers to reducing the 
number of columns in a two-‘dimensional’ matrix. Mitigating 
this ambiguity of the term ‘dimensionality’, we now use the 
term ‘tensor’. The matrix described above is a tensor of rank 
four, with the dimensions (172, 6, 5, 4) meaning that is has 172 
entries with 6 LCA KPIs, 5 sorting categories and 4 recycling 
categories each. Since most machine learning algorithms are 
not designed to work with data cubes with a rank higher than 
two, the matrix is flattened into a vertical form with rank two. 

Figure 2: Boxplots of two different LCA KPIs. As it can be seen, 
outliers are present for some KPIs. Also, it can be seen, that the 
distribution is not symmetrical.
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Before, the index is the ID (identification number) of the 
product or component, now the index is the combination of ID, 
sorting category and recycling category. In the columns, the 
LCA KPIs are shown.

This structure is universal for LCA data as anticipated in this 
paper because different product design scenarios can replace 
the combination of recycling and sorting scenarios, as they are 
equivalent from a data structure point of view. 

Because the columns, i.e. the LCA KPIs, are not linearly
dependent, the rank is always the number of columns 𝑛𝑛 due to

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐴𝐴) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚, 𝑛𝑛),
when 𝐴𝐴 is a (𝑚𝑚 𝑥𝑥 𝑛𝑛) matrix or, equivalently, a tensor with rank 
2 and dimensions(𝑚𝑚, 𝑛𝑛). 𝑚𝑚 is larger than 𝑛𝑛 as it represents the
number of components with all their scenarios, respectively. 

4. Method

4.1. Preprocessing

4.1.1. Normalization and Standardization
Two different methods for data normalization were used. 

The standardization (s) with mean and variance. This 
method centers the data on the mean and scales it to unit 
standard deviation. This method is highly influenced by the 
presence of outliers because it assumes a Gaussian distribution.
[11]. 

The robust (r) standardization with median and interquartile 
range (IQR). This method is robust in the presence of outliers.

4.1.2. Dealing with outliers
Identifying and handling outliers is important, as they can 

significantly affect the matrix completion process. In the data 
set used, outliers present, as can be seen in Figure 2. Next to 
the robust scaling with median and IQR as described in section 
4.1.1, winsorization (w) is used. This method limits extreme 
values to reduce the effect of outliers. It has the disadvantage
of having a hard border, which labels data points as outliers or 
not. When using winsorization, a trade-off has to be made 
between limiting the influence of outliers and changing the 
distribution. In our case, the level of winsorization was 
customized to each LCA KPI due to their different 
distributions.

4.2. Matrix Completion Algorithms

4.2.1. Statistical Matrix Completion Algorithms
Using the software package fancyimpute [12], the following 

statistical matrix completion algorithms (SMCA) are used:
As a baseline, the algorithms Mean Fill and Median Fill 

which fill the gaps with the mean or the median, respectively.
One of the easiest matrix completion algorithms is the k-

nearest neighbor (KNN) algorithm [13] with 𝑘𝑘 being the 
number of nearest neighbors that are used to fill in gaps in the 
data using the mean squared difference for the features of data 
points that both have data present.

Softimpute is an algorithm, which completes matrices by 
iterative soft thresholding of SVD decompositions [14]. 

Finally, the Iterative Imputer is used which models each 
feature with missing values as a function of other features in a
round-robin fashion [15, 16]. All the algorithms that are used 
can only work with the vertical form of the data set – as 
described in section 3. Furthermore, they can only work with 
numerical data, not with categorical. These algorithms have, 
however, the advantage of a fast computing time and their 
ability to work with small data sets. Since they are applied 
directly to the whole dataset, there is no difference between 
training and inference; there is no need for a training test split. 

4.2.2. Matrix Completion with Auto Encoders

Another class of matrix completion algorithms are auto 
encoders (AE), which have gained importance in the field of 
recommender systems and collaborative filtering to fill gaps of 
missing data. In particular denoising auto encoders (DAE) 
achieved great results in the task of imputing missing data with 
a high accuracy. AE in general have the ability to model 
complex and non-linear patterns in data. DAE aim to 
reconstruct the exact input data, which can be beneficial for 
scenarios where the goal is to recover the original values as 
accurately as possible [17].

For the reconstruction of missing LCA Data we used a DAE 
in the following way. Our denoising autoencoder was designed 
to learn efficient representations of data while reducing noise. 
It corrupts the input data with Gaussian noise, compresses it 
into a lower-dimensional latent space using a ReLU-activated 
encoder, and reconstructs the data via a sigmoid-activated
decoder. The noise factor was set to 0.2. The model is trained 
using the Adam optimizer and mean squared error (MSE) loss.  

We trained the DAE for 50 epochs and implemented an 
early stopping mechanism to halt training if there was no 
improvement for five consecutive epochs. The architecture of 
the model comprises an input layer that accepts six inputs (for 

Figure 3: Comparison of different algorithms described in section 4.2.1 for 
different pre-processing methods described in section 4.1. On the x-axis the 
amount of artificial gaps introduced to the data set are shown. On the y-axis 
the error value for each algorithm is depicted. r_std stands for robust 
preprocessing, s_std for standardization with mean and standard deviation 
and w stands for winsorization as described in section 4.1.1 and 4.1.2



892 Lisa Dawel  et al. / Procedia CIRP 135 (2025) 888–893

each scenario the six results of each metric), followed by a 
dense layer with three neurons, and another dense layer that 
reconstructs the data back to its original dimensionality of six.

To improve the robustness of our model, Gaussian noise was 
added in advance to a specific fraction of the data before 
training (10%, 20%, 30%, and 40%). The data was scaled using 
a MinMaxScaler to normalize the values to a range between 0 
and 1. Due to the limited size of the dataset for deep learning, 
the data is split in a train-test-validation ratio of 80-10-10.  

5. Results

To assess the results of the applied algorithms we are using 
three different metrics: the root mean squared error (RMSE), 
the mean squared error (MSE) and the mean absolute error 
(MAE).

5.1. Statistical Matrix Completion Algorithms

The algorithms described in 4.2.1 are applied to the dataset 
that is pre-processed as described in section 4.1. The results are 
shown in Figure 3 and Figure 4. It is obvious, that KNN is the 

best performing algorithm followed by SoftImpute and 
IterativeImpute that perform similarly. The performance of the 
benchmarking mean and median fill are the worst.  As seen in 
4, the error of KNN with k=3, is 1/10th of the error of mean and 
median fill.

The results show, that for this particular data set, outlier 
treatment is unnecessary: In Figure 3, it is evident that the 
winsorization increases the error. In addition, the robust scaling 
does not bring any advantages. This means that these pre-
processing steps can be left out. Standardization is however 
very important for most algorithms. 

5.2. Auto Encoder

Table 1. Auto Encoder results

Amount

augmentation

Missing

ratio

MSE RMSE MAE

1 0.05 0.0004 0.0208 0.0035

2 0.05 0.0006 0.0230 0.0038

3 0.05 0.0007 0.0252 0.0045

0 0.05 0.0008 0.0268 0.0046

0 0.10 0.0012 0.0318 0.0076

2 0.10 0.0012 0.0325 0.0076

1 0.10 0.0019 0.0399 0.0094

3 0.10 0.0035 0.0468 0.0121

3 0.20 0.0034 0.0563 0.0178

2 0.20 0.0040 0.0624 0.0185

1 0.20 0.0079 0.0763 0.0258

0 0.20 0.0103 0.0828 0.0286

1 0.30 0.0082 0.0866 0.0330

0 0.30 0.0142 0.1004 0.0415

3 0.30 0.0172 0.1061 0.0440

2 0.30 0.0175 0.1061 0.0454

3 0.50 0.0220 0.1309 0.0696

0 0.50 0.0251 0.1439 0.0719

2 0.50 0.0315 0.1492 0.0774

1 0.50 0.0332 0.1511 0.0792

Table 1 shows the performance of matrix completion using an 
auto encoder, measured by MSE, RMSE and MAE. As the 
missing ratio increases, error metrics generally rise, indicating 
that higher missing data leads to poorer imputation 
performance. Lower missing ratios and augmentation levels 
result in better accuracy, demonstrating the model's limitations 
with increased data sparsity.

Figure 5 shows a heatmap of the results of the AE models.
The graph shows that an increase in missing data points is 
accompanied by an increase in the error metric. In general, 
moderate augmentation (around 1 or 2) seems to help reduce 
RMSE, particularly for higher missing ratios (e.g. missing ratio 
0.20 with augmentation level 3). Too much augmentation or no 
augmentation at all often results in worse performance at higher 
missing ratios. Figure 5: Heatmaps showing the impact of augmentation and missing 

data on error metrics (MSE, RMSE, MAE).

Figure 4: Comparison of the different algorithms described in section 4.2.1
for one pre-processing method:  standardization with mean and standard 
deviation. The KNN works best, SoftImpute and IterativeImpute have a 
similar performance. As expected have Mean and Median Fill the worst 
performance as they are for reference only. Median Fill works better than 
Mean Fill which could be due to the outliers in the data. On the x-axis the 
number of artificial gaps introduced to the data set are shown. On the y-axis 
the error value for each algorithm is depicted. As expected, the error rises 
with increasing percentage gaps for most algorithms. 
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6. Conclusion and Future Work

To summarize, the paper shows the performance of the 
different algorithms and preprocessing methods for matrix 
completion. Ultimately, if the size of the data set is large 
enough – as in this case - DAE can work very well with LCA 
data. The performance of the SMCAs is comparable to the 
performance of the AE. Our results suggest a high influence of 
the pre-processing steps for the SMCAs Depending on error 
type and algorithms, most algorithms performed well until up 
to 30% missing values rendering it very useful. When applying 
matrix completion methods to other data sets, it is necessary to 
select preprocessing methods and algorithms fit the unique 
properties of the data and the needs of the application. 

DAEs have the advantage, that once trained they can be used 
for multiple inferences even without the training data set 
present. However, the training data set needs to be a full data 
set without any gaps. SMCAs can work with much less data 
and can impute gaps directly in the data set. 

In future work we want to try out other pre-processing 
methods with further matrix completion algorithms. In 
addition, the combination of physical models and methods of 
artificial intelligence can further improve the models, 
especially when data is scarce. This could be achieved with 
models like [18, 19]. Furthermore, we want to apply our 
knowledge to other data sets to see if the results are replicable. 
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