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Abstract

When modelling a product by using the LCA methodology, some gaps of knowledge need to be filled in. One solution is to use
estimates from available data that could be outdated or only fit roughly the same category. Another solution is to use Al, which
generalizes knowledge and can thus provide better estimates. LCA data has a unique structure that certain machine learning
algorithms can use to their advantage like the linear dependency between a subset of metrics and scenarios. The research
question is how good this generalization works on LCA datasets of limited size with their unique properties. It includes an
analysis, which pre-processing techniques that are taking into account the unique structure of LCA data, can improve the
prediction performance. Furthermore, the threshold the percentage of missing entries can reach while still ensuring a reasonable
performance, is analysed. This paper is a case study that investigates the potential of matrix completion algorithms on LCA data
on a small scale using recycling scenarios for parts of professional data centers to derive knowledge for bigger scales.
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1. Introduction

In our modern world, we need more sustainable solution in
all areas of modern life. One important sector regarding green
house gas emission is Manufacturing / Construction that
accounted to approximately 13% of all world CO, equivalents
emissions in 2021 [1]. This paper focusses on the
manufacturing sector. It has a big influence on the everyday life
of every human as products surround us all. The design of
products has a big influence on the manufacturing sector. If
products are designed more sustainably, the manufacturing
emissions should decrease as well. Furthermore, if products are
designed in such a way that they are repairable and/or last
longer, the emissions from the manufacturing sector should
decrease as well — at least in the long run.

The sources for this knowledge and all the sustainability
KPIs is the Life Cycle Assessment (LCA), which models the
whole production process of the product. However, in order to
model the whole process a lot of reference data is necessary.
This is very important to ensure that the model fits the
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application and to ensure that the results are realistic. The
challenge arises that not all data is available in the Ecoinvent
database or that the data available is incomplete. Hence, models
have to be built on available data and might not be accurate.
This paper aims to help mitigate this challenge by studying how
good matrix completion algorithms work for LCA data. This is
relevant due to the unique structure of LCA data. The research
questions are defined as follows:

RQ1: How well do different matrix completion al gorithms
work for the unique structure of LCA data?

RQ2: Where is the threshold for missing entries so that the
results are still reasonably good?

To study these research questions, a data set of professional
data centers [2] was selected. The dataset is described in section
3.

2. Literature Review

Matrix completion is a well-known area of research for quite a
long time [3]. Next to classical approaches that use properties

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Academy for Production Engineering (CIRP)

10.1016/j.procir.2024.12.088



Lisa Dawel et al. / Procedia CIRP 135 (2025) 888—-893 889

of matrices to fill in missing information the Netflix problem
brought new algorithms to fruition and sparked the use of deep
learning algorithms in this field. Using matrix completion in
the LCA promises many advantages. When modelling a
product, not all data needed is always available. Then, data
from the literature needs to be used to fill in the gaps, which is
a time consuming process. However, the data that is available
in databases like Ecoinvent, might not fit the application very
well. For this, the matrix completion algorithm could be used
to fill in the gaps in the data.

A research gap was identified in the area of completing
missing data in life cycle assessments (LCA). This gap is
particularly pronounced for LCA data that relate to server
components. The majority of the studies analyzed focus on
completing missing data within the Ecoinvent database, which
plays a central role in conducting life cycle assessments [4]. To
the best of our knowledge, only the following papers exist in
this area.

In their paper, Fangfang et al. [5] present two approaches for
estimating missing information in LCA and input-output
analysis. Both approaches are based on the assumption that the
data used in the analysis have a low-rank or almost low-rank
structure due to their similar data structures [6] and input ratios.
Based on this assumption, the authors used matrix completion
techniques to reconstruct the missing data. Two non-negative
matrix completion models were presented, which are based on
the use of Alternating Direction Method of Multipliers
(ADMM). The results indicate the usefulness of the methods
used on the data that represent different production processes
and their input-output relationships. Cai [7] focused in his work
on the completion of LCI data, which also come from the
Ecoinvent database. Data was used that contains information
on various environmental inputs and outputs of industrial
processes, such as material and energy consumption as well as
emissions linked to the processes. To complete missing data, a
similarity-based link prediction procedure was used, among
other things. In addition, the author estimated missing values
based on weighted similarity metrics. Canals et al. [8] used
different approaches to fulfil gaps in LCA Data of bio-based
products. In their paper they described the use of proxy data, a
method where similar data of a product is used to estimate
another. Also averaged proxies where the average of several
similar products or scaled data where used to fill the gaps.
Furthermore, data was extrapolated by adapting existing
datasets to new products by changing parameters, such as
production methods or regional characteristics. Zhang et al. [6]
applied methods like Singular Value Thresholding (SVT) and
Factor Group-Sparce Regularization (FGSR) to complete data
in realtime. The examined data originates from a specific part
of a distillation unit of a refinery. Imputed values were based
on values of temperature, pressure and flow rate data. Results
are showing a superior accuracy compared to traditional MC
methods. Saad et al. [9] used an approach based on decision
trees to close gaps in LCI data of the Ecoinvent database. The
paper is focusing on GHG emissions in the manufacturing
process of products. Models like Gradient Boosting showed
high accuracy in prediction emissions.

Summarizing, in some of the papers presented above [6, 7,
9], the error is still remains relatively substantial, especially for
small datasets. This makes these algorithms useful when the
alternative is not having any data. However, the results have to
be checked for plausibility in each case, which makes the
process tedious. One possible reason could be outliers in the
data that are not treated. The usage of robust pre-processing
methods or robust matrix completion algorithms can be a
solution. However, we found very few papers using robust
matrix completion methods in LCA data to deal withimpulsive
noise or outliers like Wen et al. [10] or Fangfang et al. [5]

In this paper, we aim to close this research gap by analyzing
matrix completion algorithms and deep learning algorithms
with robust preprocessing for the specific field of datacenters.

3. TEMPRO Dataset

The data used for this is the dataset is the results of the
project TEMPRO: Total Energy Management for Professional
Data Centers”. This project analyzed the components of
professional data centers to construct updated models for LCA.
Additionally, recycling scenarios for different key material
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PhD Dissertation Penaherrera, 2024)

w=4.63e+03
o=124



890 Lisa Dawel et al. / Procedia CIRP 135 (2025) 888—893

were developed. Data on PCB components was extracted and
analyzed. This ensures that the dataset is more accurate than
data from literature and is highlighted in Figure .

The analysis of inventories at different granularity levels
allows Material Flow Analysis to be conducted for the stages
of the lifecycle. In addition, the use of Monte Carlo analysis
paired with data quality and inventory uncertainty evaluation
allows evaluating the quality of the results, and to evaluate the
improvements on said quality obtained. A complete separate
database with products built only based on reference ecological
databases was constructed in Penaherera [2] to quantify the
improvements achieved through the incorporation of data from
laboratory analysis. While a clear improvement can be
observed in the material-related indicators at the resource
accounting. This reflects the methodologies for construction of
such indicators and shows the effects of incorporating more
material flows and higher quantities of material use for
manufacturing of electronic components. Reporting of the
uncertainty increases in general the quality of any LCA study,
with a full quantitative uncertainty assessment giving high
transparency on the quality of the results provided.

By using a variety of indicators for evaluation, this work
presents novel insights on material depletion and on energy use
for various products, whose high specific critical material
content make them of relevance for urban mining and for
securing secondary material sources. Additionally, the use of
Monte Carlo simulations paired with data quality to evaluate
the results is a procedure not commonly observed within LCA
studies, mostly due to time and to computer resource
constraints. This last evaluation provided an insight on
methodologies for evaluation of results quality and on the
improvement of said quality, while also providing a basis for
studying interdependences of indicators. However, limitations
on the methodology are reflected when evaluating the
distribution of the results. Therefore, this research will be
continued in combination with the matrix completion.

The modeling of recycling and the evaluation of the results
of each scenario was done using LCA of the product, material
flow analysis, and evaluation of recycling processes. Recycling
is modeled in two main steps: Pretreatment and metal recovery.

Many metals are concentrated on certain parts of the WEEE
(Waste from Electrical and Electronic Equipment)
components. Pretreatment has the goal of separating different
portions with concentration of a specific metal or metal family.
Disassembly of these parts is the most time-consuming
operation. Automatic, semiautomatic, and manual disassembly
systems have been developed, the latter being the most adopted
technique. The recovery efficiency by manual treatment is a lot
higher than that of automatic systems. Manual sorting and
dismantling are economically unfeasible in developed
economies.

Several pretreatment processes where considered to develop
models and scenarios, where the main difference lies on the
amount of material loss in each pretreatment chain.

Pretreatment processes considered are manual sorting and
dismantling, multilevel deep manual dismantling (which
includes manual separation of soldered components such as

integrated circuits), mechanical/automated
separation, or a combination of both.

After pretreatment, four material recovery processes were
evaluated. Pyrometalurgical recovery, the most widely used
process in industry, involves the use of elevated temperature
process to extract metals. Hydrometallurgical recycling uses
techniques to leach metals into solutions during reactions with
leachants and oxidants. Products are afterward separated and
purified. Electrochemical recovery involves separation of base
metals and precious metal containing fractions. It has the
advantage of a lower use of chemical agents. Biometallurgical
processes use special microbes for metal extraction, with an
emphasis on recovery of copper and gold.

The part of the dataset that is used contains multiple levels:
different data centers, their systems (e.g. climatization, server
room, server rack), their devices (e.g. server 1U, storage or
power distribution unit), their different parts (e.g. CPU, HDD,
Mainboard). Moreover, models for the production of their
constituent materials were developed. Therefore, there are four
levels of data in this dataset. Data centers contain very different
parts and outliers are present. We are investigating the
influence of these outliers in section 5. For the whole dataset,
172 different components are used.

From the models, different impacts were calculated using
different methodologies [2]. From this, the following six LCA
KPIs (key performance indicators) have been selected:
Greenhouse gas emissions [kgCO2e], ReCiPe-Total Impacts,
Geo-Political Supply Risk, ADP — Economic Importance [kg
Sb-eq], Primary Exergy Demand [MJ-eq], and Primary Energy
Demand [MJ-eq].

Thus, a four-dimensional dataset, a data cube, is created
with the four dimensions as follows: (1) One dimension
contains the components of the datacenters with the levels
described above. (2) One dimension captures the recycling
scenarios, (3) the next the sorting scenarios. (4) The last
dimension contains the six LCA KPIs.

The term 'dimensionality’ refers here to the structural
arrangement of the data in terms of axes within the matrix. In
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Figure 2: Boxplots of two different LCA KPIs. As it can be seen,

outliers are present for some KPIs. Also, it can be seen, that the

distribution is not symmetrical
dimensionality reduction, it however refers to reducing the
number of columns in a two-‘dimensional’ matrix. Mitigating
this ambiguity of the term ‘dimensionality’, we now use the
term ‘tensor’. The matrix described above is a tensor of rank
four, with the dimensions (172, 6, 5, 4) meaning that is has 172
entries with 6 LCA KPIs, 5 sorting categories and 4 recycling
categories each. Since most machine learning algorithms are
not designed to work with data cubes with a rank higher than
two, the matrix is flattened into a vertical form with rank two.
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Before, the index is the ID (identification number) of the
product or component, now the index is the combination of ID,
sorting category and recycling category. In the columns, the
LCA KPIs are shown.

This structure is universal for LCA data as anticipated in this
paper because different product design scenarios can replace
the combination of recycling and sorting scenarios, as they are
equivalent from a data structure point of view.

Because the columns, i.e. the LCA KPIs, are not linearly
dependent, the rank is always the number of columns n due to
rank(4) < min(m,n),
when 4 is a (m x n) matrix or, equivalently, a tensor with rank
2 and dimensions(m, n). m is larger than n as it represents the

number of components with all their scenarios, respectively.

4. Method
4.1. Preprocessing

4.1.1. Normalization and Standardization
Two different methods for data normalization were used.

The standardization (s) with mean and variance. This
method centers the data on the mean and scales it to unit
standard deviation. This method is highly influenced by the
presence of outliers because it assumes a Gaussian distribution.
[11].

The robust (r) standardization with median and interquartile
range (IQR). This method is robust in the presence of outliers.

4.1.2. Dealing with outliers

Identifying and handling outliers is important, as they can
significantly affect the matrix completion process. In the data
set used, outliers present, as can be seen in Figure 2. Next to
the robust scaling with median and IQR as described in section
4.1.1, winsorization (w) is used. This method limits extreme
values to reduce the effect of outliers. It has the disadvantage
of having a hard border, which labels data points as outliers or
not. When using winsorization, a trade-off has to be made
between limiting the influence of outliers and changing the
distribution. In our case, the level of winsorization was
customized to each LCA KPI due to their different
distributions.

4.2. Matrix Completion Algorithms

4.2.1. Statistical Matrix Completion Algorithms

Using the software package fancyimpute [ 12], the following
statistical matrix completion algorithms (SMCA) are used:

As a baseline, the algorithms Mean Fill and Median Fill
which fill the gaps with the mean or the median, respectively.

One of the easiest matrix completion algorithms is the k-
nearest neighbor (KNN) algorithm [13] with k being the
number of nearest neighbors that are used to fill in gaps in the
data using the mean squared difference for the features of data
points that both have data present.

Softimpute is an algorithm, which completes matrices by
iterative soft thresholding of SVD decompositions [14].

Finally, the Iterative Imputer is used which models each
feature with missing values as a function of other features in a
round-robin fashion [15, 16]. All the algorithms that are used
can only work with the vertical form of the data set — as
described in section 3. Furthermore, they can only work with
numerical data, not with categorical. These algorithms have,
however, the advantage of a fast computing time and their
ability to work with small data sets. Since they are applied
directly to the whole dataset, there is no difference between
training and inference; there is no need for a training test split.

4.2.2. Matrix Completion with Auto Encoders

Another class of matrix completion algorithms are auto
encoders (AE), which have gained importance in the field of
recommender systems and collaborative filtering to fill gaps of
missing data. In particular denoising auto encoders (DAE)
achieved great results in the task of imputing missing data with
a high accuracy. AE in general have the ability to model
complex and non-linear patterns in data. DAE aim to
reconstruct the exact input data, which can be beneficial for
scenarios where the goal is to recover the original values as
accurately as possible [17].

For the reconstruction of missing LCA Data we used a DAE
in the following way. Our denoising autoencoder was designed
to learn efficient representations of data while reducing noise.
It corrupts the input data with Gaussian noise, compresses it
into a lower-dimensional latent space using a ReLU-activated
encoder, and reconstructs the data via a sigmoid-activated
decoder. The noise factor was set to 0.2. The model is trained
using the Adam optimizer and mean squared error (MSE) loss.

We trained the DAE for 50 epochs and implemented an
early stopping mechanism to halt training if there was no
improvement for five consecutive epochs. The architecture of
the model comprises an input layer that accepts six inputs (for
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Figure 3: Comparison of different algorithms described in section 4.2.1 for
different pre-processing methods described in section 4.1. On the x-axis the
amount ofartificial gaps introduced to the data set are shown. On the y-axis
the error value for each algorithm is depicted. r_std stands for robust
preprocessing, s_std for standardization with mean and standard deviation
and w stands for winsorization as described in section4.1.1 and 4.1.2
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Errors for standardized dataset without winsorization

=——————== e ———— D il L Y R —————— -
0.6 4
0.5 4
0.4 Algorithms
—a— KNN I
w Softimpute £ B
= | —® lterativelmputer ! 3 '_,./'/
0.3 —&  MeanfFill R
—e— MedianFill — T L
02 '
0.1
0.0 4

51 P 30 50
Percentage Gaps (%)
Figure 4: Comparison of the different algorithms described in section4.2.1
for one pre-processing method: standardization with mean and standard
deviation. The KNN works best, Softimpute and Iterativelmpute have a
similar performance. As expected have Mean and Median Fill the worst
performance as they are for reference only. Median Fill works better than
Mean Fill which could be due to the outliers in the data. On the x-axis the
number of artificial gaps introduced to the data set are shown. On the y-axis
the error value for each algorithm is depicted. As expected, the error rises
with increasing percentage gaps for most algorithms.

each scenario the six results of each metric), followed by a
dense layer with three neurons, and another dense layer that
reconstructs the data back to its original dimensionality of six.

To improve the robustness of our model, Gaussian noise was
added in advance to a specific fraction of the data before
training (10%, 20%, 30%, and 40%). The data was scaled using
a MinMaxScaler to normalize the values to a range between 0
and 1. Due to the limited size of the dataset for deep learning,
the data is split in a train-test-validation ratio of 80-10-10.

5. Results

To assess the results of the applied algorithms we are using
three different metrics: the root mean squared error (RMSE),
the mean squared error (MSE) and the mean absolute error
(MAE).

5.1. Statistical Matrix Completion Algorithms

The algorithms described in 4.2.1 are applied to the dataset
that is pre-processed as described in section 4.1. The results are
shown in Figure 3 and Figure 4. It is obvious, that KNN is the
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Figure 5: Heatmaps showing the impact of augmentation and missing
data on error metrics (MSE, RMSE, MAE).

best performing algorithm followed by Softlmpute and
Iterativelmpute that perform similarly. The performance of the
benchmarking mean and median fill are the worst. As seenin
4, the error of KNN with k=3, is 1/10 of the error of mean and
median fill.

The results show, that for this particular data set, outlier
treatment is unnecessary: In Figure 3, it is evident that the
winsorization increases the error. In addition, the robust scaling
does not bring any advantages. This means that these pre-
processing steps can be left out. Standardization is however
very important for most algorithms.

5.2. Auto Encoder

Table 1. Auto Encoder results

Amount Missing MSE RMSE MAE

augmentation  ratio

1 0.05 0.0004  0.0208 0.0035
2 0.05 0.0006  0.0230 0.0038
3 0.05 0.0007  0.0252 0.0045
0 0.05 0.0008  0.0268 0.0046
0 0.10 0.0012  0.0318 0.0076
2 0.10 0.0012  0.0325 0.0076
1 0.10 0.0019  0.0399 0.0094
3 0.10 0.0035  0.0468 0.0121
3 0.20 0.0034  0.0563 0.0178
2 0.20 0.0040  0.0624 0.0185
1 0.20 0.0079  0.0763 0.0258
0 0.20 0.0103  0.0828 0.0286
1 0.30 0.0082  0.0866 0.0330
0 0.30 0.0142  0.1004 0.0415
3 0.30 0.0172  0.1061 0.0440
2 0.30 0.0175  0.1061 0.0454
3 0.50 0.0220  0.1309 0.0696
0 0.50 0.0251  0.1439 0.0719
2 0.50 0.0315  0.1492 0.0774
1 0.50 0.0332  0.1511 0.0792

Table 1 shows the performance of matrix completion using an
auto encoder, measured by MSE, RMSE and MAE. As the
missing ratio increases, error metrics generally rise, indicating
that higher missing data leads to poorer imputation
performance. Lower missing ratios and augmentation levels
result in better accuracy, demonstrating the model's limitations
with increased data sparsity.

Figure 5 shows a heatmap of the results of the AE models.
The graph shows that an increase in missing data points is
accompanied by an increase in the error metric. In general,
moderate augmentation (around 1 or 2) seems to help reduce
RMSE, particularly for higher missing ratios (e.g. missingratio
0.20 with augmentation level 3). Too much augmentation or no
augmentation at all often results in worse performance at higher
missing ratios.
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6. Conclusion and Future Work

To summarize, the paper shows the performance of the
different algorithms and preprocessing methods for matrix
completion. Ultimately, if the size of the data set is large
enough — as in this case - DAE can work very well with LCA
data. The performance of the SMCAs is comparable to the
performance of the AE. Our results suggest a high influence of
the pre-processing steps for the SMCAs Depending on error
type and al gorithms, most algorithms performed well until up
to 30% missing values rendering it very useful. When applying
matrix completion methods to other data sets, it is necessary to
select preprocessing methods and algorithms fit the unique
properties of the data and the needs of the application.

DAEs have the advantage, that once trained they can be used
for multiple inferences even without the training data set
present. However, the training data set needs to be a full data
set without any gaps. SMCAs can work with much less data
and can impute gaps directly in the data set.

In future work we want to try out other pre-processing
methods with further matrix completion algorithms. In
addition, the combination of physical models and methods of
artificial intelligence can further improve the models,
especially when data is scarce. This could be achieved with
models like [18, 19]. Furthermore, we want to apply our
knowledge to other data sets to see if the results are replicable.
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