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a b s t r a c t

The high operating costs of Internet Data Centers (IDC) are a major challenge for their owners
worldwide. Therefore, more attention has recently been paid to the energy and cost management
of IDCs. This paper investigates the optimal operational strategy for minimizing the electricity costs of
a group of globally distributed IDCs in different locations under various day-ahead electricity markets,
and each is equipped with a high-performance energy storage system. For this goal, optimal workload
dispatching and optimal energy management of the storage units of all IDCs are simultaneously
perused by the proposed problem. The system is modeled regarding power balancing constraints,
battery costs, and quality of service (QoS). For more practical results, a penalty function is also
considered when QoS constraints are not perfectly met, and the impact of the batteries’ depth of
discharge on the cost of energy storage is also modeled. Moreover, the cross-correlations between
the traffic of IDCs are also considered by the multidimensional copula function. The proposed energy
cost optimization is linearized for increasing the accuracy of convergence. The results show that not
only the power consumption pattern of the IDCs is significantly improved, but also the cost of power
consumption is reduced by 34%. The results also prove the positive effect of battery discharge on
workload dispatch and represent a compromise between battery costs and electricity cost savings.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Motivation

The aggregated data generated every second by millions of
nternet users should be processed by different servers. These
ervers are kept in places called Internet Data Centers (IDC)
istributed geographically in the different locations of the world
Chen et al., 2020). Due to the growing demand for cloud com-
uting and Internet services, there is significant growth in the
onstruction of new IDCs or the development of available IDCs.
s a result, the electric power consumption associated with IDCs
as increased (Adrah et al., 2020). For instance, in 2014, 1.8%
f the total electricity consumption in the United States was
ssociated with the data centers, with a growth rate of 4% per
ear (Shehabi et al., 2016). The total electricity cost of an IDC
omprises 30%–50% of its operating costs (Zhou et al., 2019),
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352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
motivating experts to develop methods and new solutions to
reduce the energy consumption of the IDCs. One of the critical
factors in the operation of IDCs is the uncertain behavior of end-
users. In addition to this uncertain behavior, the workloads of the
various IDCs are spatially and temporally correlated. Therefore,
more accurate models of these temporal–spatial correlations are
one of the paradigms in the operation of IDCs.

1.2. Literature review

The research efforts in this context could be divided into
three main categories. The first category includes investigations
to decrease the IDCs’ power consumption, which depends on
the internal systems. In this category of works, the focus is on
novel facilities and optimization procedures related to the cooling
systems of data centers (i.e., computer room air conditioning
units and fans). For this, some metrics and models of an IDC are
necessary considering both computational and physical charac-
teristics, as well as, their interactions (Koronen et al., 2020). Liu
et al. (2020) presented a comprehensive review of the effect
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

Sets

i Index of the front-end web portal server
j Index of the area where IDCs are

located in
M Set of IDCs
S Set of front-end web portal servers
t Index of time

Parameters

α Penalty rate ($/request)
Lj Maximum capacity of the battery in IDC

j (kWh)
N ser

j Total number of servers in IDC j

Pch
j Maximum charging rate of battery in

IDC j (kW)
Pdis
j Maximum discharging rate of battery in

IDC j (kW)
ρ Correlation coefficient
θ Charging efficiency rate of battery
Lj Emergency level of battery in IDC j

(kWh)
Cb
j Battery cost per kWh ($/kWh)

DSLA Delay bound of SLA (s)
F (xn) nth marginal distribution functions
Nc Number of charging and discharging

cycles
T d
i,j,t Transmission delay from front-end web

portal server i to IDC j at time t (S)
wi,t Requests rate received by ith front-end

web portal server at time t (request/s)
λbat Battery price ($)
µj,t Service rate of the IDC’s server at area j

at time t (request/s)
P̃ s
j,t Power consumption of server s in IDC j

at time t (kW)
P̃dep Average depth of discharge
∆tQ Period of requests transmission from

front-end web portal server to data
centers (S)

∆tbat Period of charging or discharging mode
of the battery (h)

λe
j,t Electricity price in IDC j at time t

($/MWh)
DoD Depth of discharge

Variables

βj,t Auxiliary binary variable
Ed
i,j,t Total delay (S)

Lj,t Power level of the battery in IDC j at
time t (kWh)

nj,t Number of active servers in IDC j at
time t

Pg
j,t Transferred power from the electricity

grid to IDC j at time t (kW)
Pch
j,t Charging power of battery in IDC j at

time t (kW)
632
Pdis
j,t Discharging power of battery in IDC j at

time t (kW)
PDC
j,t Power consumption of IDC j at time t

(kW)
Q d
j,t Queening delay (S)

ξi,j,t Requested rate from front-end web
portal server i to IDC j at time t
(request/s)

of different thermal energy storage technologies on the energy
management of IDCs. A comprehensive review related to the
assessment criteria of the thermal performance of the internal
interactions of IDCs has been carried out by Gong et al. (2020).
In Li and Li (2020), an energy recovery system has been suggested
to cool an IDC using a water-side economizer. This system has
been presented by a model-based methodology to optimize the
ambient wet-bulb and the cooling tower approach temperature in
different cooling modes. He et al. (2021) presented an integrated
heat pipe cooling system considering the heat transfer and the
energy consumption model. The proposed model has defined
the relationship between the operating parameters and energy
efficiency and has been solved by Genetic Algorithm (GA). Water-
cooled multi-chiller cooling systems have been considered for
the cooling of IDCs, and the effects of different configurations
of these systems have been investigated on the reliability and
availability of IDCs in Cheung and Wang (2019). Authors in Temiz
and Dincer (2022) propose a heat recovery system to reduce
the cooling cost and increase the energy efficiency of IDCs, by
applying the IDCs’ waste heat in low-temperature district heating
networks. Marshall and Duquette (2022) have presented a heat
recovery system including a heat pump/heat pipe integrated unit
based on the three-fluid heat exchange.

The second category of works in this framework includes
the optimal workload distribution for a set of data centers to
reduce the energy cost and conserve the quality of service (QoS).
Generally, IDCs are in different geographic locations and operate
under different markets (Hintemann and Hinterholzer, 2019).
Users’ requests are first sent to the front-end web portal servers
and thereby are dispatched between the data centers. Front-end
web portal servers choose the data center with the lowest elec-
tricity price to transfer workload. According to the Service Level
Agreement (SLA), each IDC should provide the required QoS to the
end-users. If an IDC cannot satisfy the QoS, the Internet provider
must pay the penalty (Kwon, 2020). The penalty rate is deter-
mined through the SLA, and the Internet Service Providers (ISP)
should guarantee the QoS accepted by the end-users; otherwise,
they would be penalized based on SLA regulation. Considering
QoS constraints, the power consumption cost optimization prob-
lem has been presented to distributed data centers based on
dynamic voltage and frequency scaling in Ref. Gu et al. (2014).

The model presented by Gu et al. (2014) provided a bal-
ance between active servers and the operating frequency of each
server to receive workload. When the request demand rate is
more than the service rate of IDCs, the request outage is de-
fined. Authors in Jin et al. (2020) introduced a novel model for
reducing the electricity cost and meeting the outage probability
constraint via dynamically adjusting server capacity and perform-
ing demand shifting in different time scales. To manage the IDC’s
workload, in Cheng et al. (2021) a new operation scheduling is
presented considering the virtual data center allocation concept
based on the scalable constraint. The energy costs of IDCs in the
long term have been minimized by considering the optimal work-
load dispatching, the uncertainty in the price of electricity, and
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he renewable energy generation in Ref. Peng et al. (2021). Sun
t al. (2020) have given a novel workload transfer strategy for
DCs considering the local electricity markets. Applying shifting
orkload capability among distributed IDCs, the energy man-
gement of IDCs has been investigated, using demand response
rograms (Zhang et al., 2021b). Zhang and Zavala (2021) carried
ut temporally shiftable electricity demand in large-scale IDCs
o reduce the power consumption considering price sensitivity
nd cooling efficiency. Authors in Zhang et al. (2021a) used a
roactive demand response considering the impact of IDCs’ load
edistribution on the power network for appropriate pricing and
ower load balancing.
Cost reduction by using energy buffering forms the following

ategory of research activities in this regard. Electricity prices are
sually variable under different electricity markets (Lasemi et al.,
022). In day-ahead electricity markets, the power consumption
f IDCs can be planned to reduce by using energy buffering.
onsidering a set of batteries with a high capacity for each data
enter, the batteries are charged while electricity price is low and
ischarged to supply the servers while electricity price becomes
igh. In Lyu et al. (2021), an online algorithm has been presented
o reduce the cost of IDCs by energy management of storage
ystems through stochastic programming. This work disregards
he impact of the depth of discharge in the life cycle of the
attery. Sajid et al. (2019) proposed an integrated power manage-
ent of IDCs and electric vehicles (EVs) for frequency regulation.
sing renewable energy resources to supply the required energy
f IDCs has also been taken into consideration via a concept of
o-called green data centers (Hu et al., 2021). Wang et al. (2020)
roposed an analytical model for improving energy management
n large IDCs to facilitate wind power integration. Rahmani et al.
2020) investigated how to minimize energy cost and carbon
mission in IDCs connected to a microgrid considering stochastic
arameters such and microgrid design optimization.

.3. Contributions

As discussed in the literature review section, most of the
esearch works regarding the optimal operation of IDC have fo-
used on only one of the above-discussed main categories, i.e.,
ptimization of the internal system, optimization of the work-
oad distribution, and implementation of energy buffering. The
roposed models of almost all these studies suffer from the
omplexity of the nonlinear optimization problem framework.
oreover, the papers, which focus on energy buffering man-
gement, have just consider the effect of battery price and do
ot investigate the effects of depth of discharge on charge and
ischarge patterns. On the other hand, the cross-correlations
etween the traffic of IDCs and its effect on workload distribution
re other issues which are neglected in the literature. In this
aper, the energy management of distributed IDCs, located in
ifferent geographic regions under different day-ahead electricity
arkets is investigated to maximize the profit of ISPs, covering
ll these gaps. Here, both energy buffering and the workload
istribution are considered in the proposed model under the
inear optimization problem framework. A penalty cost function
s introduced to eliminate unacceptable transmission delay in QoS
onstraints due to the inappropriate QoS. The depth of discharge
s also considered in battery cost, and its effects are studied
n the time-patterns of charging and discharging. Moreover, the
aradigm of temporal–spatial correlations between IDCs is dis-
ussed in more detail. Based on historical data from IDCs, the
robability density functions (PDFs) are extracted from each IDC.
ased on these PDFs, the joint PDF of all IDCs is then calcu-
ated using the multi-dimensional (-variable) copula approach. In
act, the computation of this multi-variable joint PDF is compli-
ated, and a mathematical approach is required to decompose the
633
proposed approach into a solvable model. The pair-wise copula
function is used here as the decomposition approach.. The pro-
posed scheme is formulated via nonlinear optimization problem
(NLP) models by considering different constraints such as the QoS,
the power balance, the workload distribution, and the battery
power management. Then, the model is linearized and is given
as a mixed-integer linear optimization problem (MILP). Finally,
it is solved by the General Algebraic Modeling System (GAMS)
software. In summary, the contributions of this article are listed
as follow:

(1) An novel optimization problem is given to attain both opti-
mal workload distribution and energy management of dis-
tributed IDCs equipped with energy storage.

(2) Optimal operation strategy for minimizing electricity cost
of a group of distributed IDCs is done considering Copula-
based Multidimensional Correlation Modeling.

(3) A mixed-integer linear optimization problem (MILP) is in-
troduced to prevent the complexity of the nonlinear opti-
mization problem framework.

(4) Modeling the energy buffering with considering the depth
of discharge effect and battery cost in order to improve the
electricity consumption pattern.

1.4. Paper organization

In the rest of the paper, the proposed problem would be
presented and discussed. To this end, the next section com-
prehensively explains the mathematical formulation of the pro-
posed problem. In Section 2, at the first, multidimensional copula
function, carried out for the modeling of the cross-correlations
between the traffic of IDCs, is described, and then, the proposed
problem’s objective function and its constraints are given by dis-
cussing regarding the linearization of the model. Section 3 intro-
duces the case study, which has been applied to evaluate the pro-
posed model and the simulation results interpretations would be
provided on this section. Finally, the discussions and conclusions
drawn from the study would be given in the last section.

2. Mathematical modeling

This paper addresses the energy management for the ISP’s sys-
tem that comprises some IDCs in different geographic locations
under various electricity markets. Several front-end web portal
servers receive requests and dispatch them between the data
centers in this system. In the proposed system pictured in Fig. 1,
an energy storage system is considered for each data center so
that the part of the battery capacity is used for an emergency
time as well as the remaining will be used for energy buffering
to reduce electricity costs. Moreover, for optimal energy buffering
the correlation between the IDCs are modeled using the Copula
function. As shown in Fig. 1, S front-end web portal servers are
considered to receive the client requests, and M data centers
provide Internet services. In Fig. 1, wi,t denotes the total requests
that are received by ith front-end web portal server at time t,
and ξi,j,t is defined as the request rate transferred from the ith
front-end web portal server to the jth IDC at time t. The proposed
methodology for energy cost optimization of IDCs consists of
two main stages, i.e., the workload modeling of IDCs and the
optimization part. In the first stage, IDC’s workload uncertainties
are modeled using multivariable correlation models, and then this
enhanced workload model is used in the optimization stage. The
mathematical model of the proposed system is explained below.
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Fig. 1. Architecture of the ISP’s system with considering energy storage system for each IDC.
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.1. Multidimensional copula function

In this section, the copula function is used to model the
ultivariate correlations between IDCs. The workloads of IDCs
re naturally correlated, and this concept has been considered
n many studies, such as Ref. Chen et al. (2020). The authors in
hen et al. (2020) proposed an algorithm for employing demand–
esponse programs in IDC. In this regard, the load modeling
f IDCs is modeled based on a bottom-up approach. Although
patial and temporal correlation is considered in the workload
alance constraints of Chen et al. (2020), the proposed model is so
traightforward. In fact, the spatial and temporal correlations are
odeled by two simple equations. These equations represent that

he sum of geo-distributed services must be served (spatial cor-
elation), and the sum of services must be satisfied over a period
f time (representing temporal correlation). In this manuscript,
owever, the paradigm of temporal–spatial correlations between
DCs is discussed in more detail. Since there are many IDCs
ith corresponding traffic correlations worldwide, the dimension
f this global problem for modeling multivariate correlations is
normous. The copula function C(.) for representing the joint
istribution function F (x1, . . . , xn) could be calculated as:

(x1, . . . , xn) = C
(
F (x1), . . . , F (xn), ρ

)
(1)

Thus Every multivariate distribution function F can be split
into its marginal distributions F1, . . . , Fd and a copula C . The
copula C describes the dependence structure of the random vec-
tor X = x1, . . . , xn. It could be decoupled into the n-variate
copula density function c1...n(.) and marginal density functions
f1(x1), . . . , fn(xn) using the chain rule.

f (x1, . . . , xn) =c1...n
(
F1(x1), . . . , Fn(xn)

)
×

f1(x1) × · · · × fn(xn)
(2)

where c, f1, . . . , fd are the probability density functions corre-
sponding to F1, . . . , Fd, respectively. So the copula density func-
tion c(x1, . . . , xn) could be calculates as:

c(u1, . . . , un) =
∂C(u1, u2, . . . , un) (3)
∂u1 × ∂u2 × · · · × ∂un

634
here u1 = F1(x1) and similarly un = Fn(xn). As can be seen,
t is possible to compute the multidimensional copula function,
ut it is very complicated to solve for more than two variables.
opefully, there is a mathematical way to model the correla-
ions between the multidimensional variables through the two-
imensional copula functions based on Pair Copula functions.
n fact, the Pair Copula function decouples the problem into
olvable copula functions and provides a practical solution to a
athematical model of multidimensional correlations between

DCs. For details of Pair Copula method, Ref. Baboli et al. (2021)
ould be read. But in short, the main idea is decoupling the multi-
ariate joint distribution function f (x1, . . . , xn), using conditional
istribution as:
(x1, . . . , xn) =fn(xn) × f (xn−1|xn)

× f (xn−2|xn−1, xn) × · · ·

× f (x1|x2, . . . , xn)
(4)

and later decoupling the conditional distributions to is equal to
two-dimensional copulas. Thus all conditional functions in (4)
could be decoupled to Pair Copula functions. For example:

f (xn−1|xn) =c(n−1)n
(
Fn−1(xn−1), Fn(xn)

)
× fn−1(xn−1).

(5)

There are many possible ways to construct Pair Copula for multi-
variate distributions, e.g., 240 various constructions for 5-variate
density (Baboli et al., 2021). However, in this paper, three IDCs are
considered, and as a result, the 3-variable pair copula function
has been written as an example. The general expression in the
three-dimensional case is:
f (x1,x2, x3) = f1(x1) × f2(x2) × f3(x3)

× c12
(
F1(x1), F2(x2)

)
× c23

(
F2(x2), F3(x3)

)
× c13|2

(
F (x1|x2), F (x3|x2)

)
.

(6)

where f1, f2, and f3 in the first line are individual marginal density
functions of each input variable, c12, and c23 in the second line are
unconditional Pair Copula functions and c13|2 in the last line is the
conditional Pair Copula function.
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.2. Objective functions

In the proposed model, the power consumption cost of IDCs
ncludes three parts. The first part is the cost of the power
bsorbed by the whole system from the electricity grid. This part
an be defined as follows:

1 =

24∑
t=1

M∑
j=1

λe
j,t . Pg

j,t (7)

The second part is the cost of the battery, which can be defined
as follows:

F2 =

24∑
t=1

M∑
j=1

Cb
j .P

ch
j,t (8)

where, Cb
j defines the cost of battery and Pch

j,t indicates the amount
of power charged into the battery in jth IDC at time t. Lithium-
on batteries are commonly used in UPS systems. The battery life
ycle (Ncycle) depends on three factors: the number of charges and
discharges cycles, depth of discharge, and the working tempera-
ture. Since Ncycle effects on the operation, maintenance (OM&R),
nd replacement costs of the battery, we can reach a better
olution for the charging and discharging pattern with the aim of
educing OM&R costs by considering the depth of discharge effect
n the system operation. Actually, the depth of discharge and the
umber of charging and discharging for a battery are inversely
elated. Hence, the cost of the battery could be converted into the
ost of discharged power. The cost of power discharge according
o Yao et al. (2013) is presented by:

b
j =

λbat

DoD.Nc .P̃dep
(9)

where, λbat denotes battery price, DoD indicates the maximum
battery capacity, Nc defines the number of charging and dis-
charging cycles in the battery life cycle and P̃dep shows the av-
erage depth of discharge. As mentioned, the ISPs have to pay the
penalty, if QoS is not met. Therefore, the penalty cost should be
considered as follows:

F3 =

24∑
t=1

M∑
j=1

S∑
i=1

∆tQ .α.ξi,j,t (10)

n which, ∆tQ is the timeframe that the requests are sent to the
DCs without regarding QoS constraint. ξi,j,t denotes the request
ates transferred from ith front-end web portal server to the jth
ata center at time t. α is the penalty rate stated in the service
evel agreement and is defined as dollars per request.

.3. Constraints

.3.1. Power consumption of servers
For simplicity, it is assumed that all servers in IDCs are sim-

lar and work with the same frequency. Therefore, the power
onsumption of all servers is equal, i.e., P̃ s

j,t = const. ∀t, ∀j.

2.3.2. Active servers’ constraint
The number of active servers in each data center is between

zero and the total servers of the data center:

N ser , ∀j, ∀t (11)
0 < nj,t < j

635
2.3.3. Workload balance model
Each client working with the internet sends its requests to the

front-end web portal servers, which transmit them to the IDCs.
Therefore, the front-end web portal server receives the workload
and dispatches them between IDCs. It can be formulated by (12).

M∑
j=1

ξi,j,t = Wi,t , ∀i, ∀t (12)

2.3.4. QoS constraint
The end-to-end delay requirement is one of the most impor-

tant factors for clients to evaluate the QoS. It is divided into
two parts: the transmission delay and the Queuing delay. The
transmission delay is the time that the workload is transmitted
from the front-end web portal server to IDC. Also, the Queuing
delay is the amount of time the workload must wait to process
by the server. (13) illustrates the total delay.

Ed
i,j,t=Q d

j,t+T d
i,j,t , ∀i, ∀t, ∀j (13)

where Q d
j,t denotes queuing delay, T d

i,j,t indicates transmission
delay and Ed

i,j,t is the total delay. The delay must be lower than
a certain amount that this amount is determined in the Service
Level Agreement (SLA).

Ed
i,j,t<DSLA , ∀i, ∀t, ∀j (14)

where, DSLA defines delay bound. The distance between each
front-end web portal server to IDCs is different. The transmission
delay is related to the distance between the web portal server to
the IDC and workload rate. In the far distance, the transmission
delay is becoming more. If the request rate becomes greater,
the transmission delay time is increased. Also, the queuing delay
model is considered for each data center with the M/M/n queuing
mode. In this model, the queuing delay is represented using the
following equation:

Q d
j,t=

1

nj,t .µj,t−
∑S

i=1 ξi,j,t
, ∀t, ∀j (15)

where µj,t represents the service rate for each server in the jth
data center at time t.

2.3.5. Charge and discharge constraint
The power level of the battery is obtained following equation:

Lj,t+1=Lj,t+∆tbat .(Pch
j,t−Pdis

j,t ) , ∀t, ∀j (16)

where Lj,t denotes battery power level in the jth data center at
time t. ∆tbat is a period that the battery is planned to charge and
discharge. The battery power level must be between the emer-
gency level and the battery’s maximum capacity. This constraint
is following as:

Lj < Lj,t < Lj , ∀t, ∀j (17)

.3.6. Power balance constraint
In this subsection, the balance constraint of the proposed

ystem can be defined as follows:
DC
j,t =nj,t . P̃ s

j,t , ∀t, ∀j (18)

PDC
j,t =Pg

j,t−
Pch
j,t

θ
+Pdis

j,t , ∀t, ∀j (19)

where, P̃ s
j,t denotes the power consumption of each server. PDC

j,t is
the power consumption of jth data center at time t. Pg

j,t defines the
power absorbed from the electricity grid. In addition, it should be
assumed that this power is always positive.

0 < Pg
, ∀t, ∀j (20)
j,t
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.3.7. Battery constraints
Each battery has a specific capacity for charging and discharg-

ng. Also, a battery cannot be charged and discharged simultane-
usly. (21)–(23) show the battery constraints:

≤ Pch
j,t ≤ Pch

j , ∀t, ∀j (21)

≤ Pdis
j,t ≤ Pdis

j , ∀t, ∀j (22)

ch
j,t . Pdis

j,t =0 , ∀t, ∀j (23)

.4. Linearization

In the optimization problems, attaining the global best so-
ution for NLP is complicated and strict due to the non-convex
easible set. As can be seen, the proposed problem is introduced
s NLP due to (15) and (23). QoS constraint can be converted and
ewritten as (24) by substituting (13) and (15) into (14).

1
DSLA−T d

i,j,t
≤ nj,t . µj,t−

S∑
i=1

ξi,j,t , ∀i, ∀t, ∀j (24)

d
i,j,t<DSLA , ∀i, ∀t, ∀j (25)

Moreover, for linearizing (23), an auxiliary binary variable βj,t
can be defined, and then (26)–(28) can be considered against the
battery constraints described in (21)–(23).

βj,t∈{0, 1} , ∀t, ∀j (26)

Pch
j,t ≤ Pch

j .βj,t , ∀t, ∀j (27)

Pdis
j,t ≤ (1−βj,t ).Pdis

j , ∀t, ∀j (28)

.5. Proposed problem

The proposed operation problem of Distributed IDC is pre-
ented by (29) as a MILP, where, to find the optimal operation
oint of the problem, the Weighted Sum Method (WSM) is uti-
ized to convert the problem into single-objective optimization
orm, then it is solved by GAMS software. Respectively, X1 and
2 are considered as the vector of the decision variables, and the
ector represents the dependent variables of the proposed model.

in
X1

C=w1
F1

F∗

1 min
+w2

F2
F∗

2 min
+w3

F3
F∗

3 min
(29)

.t. Eqs. (1)–(6), (10)–(14), (18)–(21) (30)

X1 = [βj,t , Pch
j,t , P

dis
j,t , nj,t , P

g
j,t , ξi,j,t ] (31)

2 = [PDC
j,t , Lj,t , F1, F2, F3] (32)

. Simulation and results

.1. Case study

In this paper, the ISP’s system includes three Google IDC
ocated in different locations in the United States of America,
nder distinct electricity markets: Mountain View, Houston, and
tlanta (Shao et al., 2013). Also, four web portal end servers are
ssumed for distributing the workload to IDCs. The electricity
rices are determined through a day-ahead process. The electric-
ty price on a particular day in the three locations is shown in
ig. 2 (Shao et al., 2013). As can be seen in Fig. 2, the electricity
636
Table 1
The parameter of ISP’s servers in IDCs located in a different area.
J Nmj P (kW) µ

Mountain View, CA 50000 120 2
Atlanta, GA 30000 120 2
Houston, TX 40000 120 2

Table 2
The parameters of the batteries installed in Mountain View and Houston.
J P1 ($) nt CM (kWh) Cr (kWh) Dr (kWh)

1 240,000 2000 24,000 3000 3000
3 160,000 2000 16,000 2000 2000

Table 3
The amount of the penalty rate (requests/s) for the proposed scenarios in
different ranges of time delay (ms).
Scenario # Time delay (TD) range (ms)

<80 80–110 110–150 > 150

S1 0 1.25 × 10−7 2.5 × 10−7 3.75 × 10−7

S2 0 2.5 × 10−7 5 × 10−7 7.5 × 10−7

S3 0 5 × 10−7 1 × 10−6 1.5 × 10−6

price in Mountain View and Houston is variable, while the elec-
tricity price in Atlanta is constant during the day. For example, in
Houston, TX, the electricity price at 15 is almost triple rather than
the electricity price at 3. Hence, the battery can be considered to
the reliability of the system, it plays the role of energy buffer to
reduce the cost of the power consumption of the IDCs in these
locations. Also, the transmission delays from the front-end web
portal servers to the IDCs have been shown in Figs. 3 to 5 for
each location (Shao et al., 2013).

The workload of every front-end web portal server is pre-
sented as the amount of request per second or request rate in
Figs. 6 to 9 by dash line. Based on the proposed methodology in
subsection II.A, the multivariate correlation modeling has been
performed and the pair copula structures for these four front-
end web portal servers are constructed. Based on the forecast
error model and the calculated correlations, synthetic data are
then generated to model the probable scenarios. The distributions
of these generated scenarios are also shown in Figs. 6 to 9 by a
boxplot. In these figures, the maximum, minimum, and average
values, as well as a standard deviation below and above the
average values are shown. In this paper, the average value of the
synthetic data is considered instead of the individual forecasts of
the front-end web portal servers, which provides a more realistic
representation of the servers’ workload in the day-ahead energy
market.

The parameters of servers included the number of servers in
IDCs, the power consumption of all servers, and the service rates
have also been shown in Table 1. Due to the time-variability of
electricity, two high-capacity batteries are considered for IDCs
located in Houston, TX, and Mountain View, CA for energy buffer-
ing. A portion of the capacity of each battery is considered for
the reliability of IDC and the remaining capacity is for energy
buffering. The parameters of batteries have been listed in Table 2.
These parameters include the battery’s price, the time of charge
and discharge of the battery in the life cycle, the maximum
capacity, and the charging and discharging rate. It also supposes
that the battery charging efficiency is equal to 0.96.

The penalty rate for IDC is applied when QoS is not satisfied.
Three scenarios with three different levels (low, medium, and
high level) for penalty rates are considered. Table 3 demonstrates
the penalty rate (requests/s) for these three scenarios in different

ranges of time delay.
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Fig. 2. Electricity price for the different locations where ISP’s data centers are located in the different areas (Shao et al., 2013).
Fig. 3. Transmission delay from front-end web portal servers to data centers located in Mountain View.
Fig. 4. Transmission delay from front-end web portal servers to data centers located in Atlanta, GA.
.2. Results and discussions

In this section, we analyze the results obtained from the sim-
lation of the proposed problem. The number of active servers is
637
shown for the scenarios in Figs. 10–12. It is obvious that the num-
ber of active servers in location j at time t should be proportional
to its costs. Fig. 6 demonstrates the obtained result of the scenario
I in which the penalty rate has been considered with a low-level
rate. As can be seen in Fig. 6, the servers located in Atlanta are
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Fig. 5. Transmission delay from front-end web portal servers to data centers located in Houston, TX.
Fig. 6. Request rate from users to front-end web portal of 1st server.
Fig. 7. Request rate from users to front-end web portal of 2nd server.
ot utilized for the Internet services in the operation duration
ue to high electricity prices in the local electricity market of this
rea. In the first scenario, regarding the obtained results, decision
aking for utilization of the ISP’s server is done only base on
lectricity price and the TD index does not affect this decision-
aking due to being low the penalty rate. It is clear from Fig. 2

hat the electricity price has the lowest rate in Mountain View
n comparison to other areas from 7 A.M to 5 P.M. Therefore,
n this duration, all ISP’s servers of this city have been selected
o process some part of client’s request. The remained part of
he client’s request has been distributed to the servers located
ouston because the electricity price of this city is lower than
he electricity price of Atlanta.
638
In contrast to the first scenario, the TD index affects the
selection of the active servers to carry out the service of the
internet provider company for other scenarios. Fig. 11 shows the
result obtained from scenario II, in which the penalty rate with
a medium level rate is considered. Comparing this figure with
Fig. 6, it is extracted that the TD index changes the decision-
making for the duration from 10 A.M. to 1 P.M. In this way, the
priority for carrying out the processing of the client request is
transferred to the servers located in Houston, TX, despite the
higher electricity price than the price of Mountain View. Also,
for Scenario III (Fig. 12), the servers’ participation in Atlanta is
seen. As an interesting point, in the mentioned duration, there is
not only a priority problem but also the main problem of how
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Fig. 8. Request rate from users to front-end web portal of 3rd server.
Fig. 9. Request rate from users to front-end web portal of 4th server.
Fig. 10. The obtained result regarding the number of active servers for scenario I (with low-level penalty rates).
much the requests should be dispatched to the servers located
in Mountain View and Atlanta. It can be seen that none of the
servers of these two areas are utilized in their maximum capacity.

Figs. 13–15 show the obtained results of scenario III about
the workload distributed from front-end web portal servers to
the IDCs of Mountain View, Atlanta, and Houston, respectively.
In all transfers, the transmission delay time is under 80 ms. Due
to the high penalty rate, when the delay is closer to 80 ms, the
rate of workload received by the IDC should be adjusted to assist
the reduction of Queuing delay to keep the general delay under
80 ms. As shown in Fig. 13, the transmission delay from front-end
web portal servers 2, 3, and 4 to the IDCs located in Mountain
639
View is more than 80 ms, from 10 A.M. to 1 P.M. (Fig. 3), and this
would make the workload transmission to be not economically
affordable. Hence, the front-end web portal server 1 transfers the
requests to the IDC of this area.

At the mentioned period, another part of the requests is trans-
ferred by the front-end web portal servers 3 and 4 to the IDC
at Houston (Fig. 15), where the electricity cost is lower than
in Atlanta. Finally, the workload of front-end web portal server
2 is transferred to the IDCs in Atlanta (Fig. 14) because the
transmission delay from this server to the IDCs of other areas is
more than 80 ms at this period. By considering the medium rate
for the penalty rate, the distribution of workload will be changed,
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Fig. 11. The obtained result regarding the number of active servers for scenario II (with medium-level penalty rates).
Fig. 12. The obtained result regarding the number of active servers for scenario III (with high-level penalty rates).
Fig. 13. The workload assigned from front-end web portal servers to IDCs located in Mountain View.
nd the workload of front-end web portal server 2 is transferred
o the IDCs at Mountain View. Because, in this case, the power
640
consumption cost for transferring requests to Atlanta’s IDCs is
more than the total cost for transferring requests to Mountain
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Fig. 14. The workload assigned from front-end web portal servers to IDCs located in Atlanta.
Fig. 15. The workload assigned from front-end web portal servers to IDCs located in Houston.
View’s IDCs and to be penalized (because the QoS constraint is
not satisfied).

Figs. 16 and 17 show the charging and discharging batteries
in Mountain View and Houston, respectively. Moreover, Fig. 18
displays the energy level of these batteries. Respectively, the
power level of batteries in Mountain View and Houston are
always at least 3 MW and 2 MW for emergency time. Considering
the electricity price (Fig. 2) in these two areas, the logical trend
of charging and discharging batteries is seen from Figs. 16 and
17. Considering the obtained results demonstrated in Figs. 12
and 16, it can be seen that the parts of the workload requests
are also transferred to the Mountain View’s IDC from 7 P.M. to
11 P.M., despite being higher the electricity price in this area
than the Houston price. This issue shows the advantage of energy
buffering.

The hourly total electricity cost for three different dispatching
methods, including the average dispatch method, the optimal
dispatch method with and without considering energy storage,
is depicted in Fig. 19. Because of the too high electricity price
in Atlanta, GA, the total electricity cost in the average dispatch
workload is high. The workload transmission to the IDCs of this
area has economic justification just in the case of QoS is not
satisfied, and the penalty rate is too high. On the other hand,
641
the power consumption cost is reduced by optimal workload
balancing and peak shaving when the energy buffering is applied.
As a result, the power consumption scheme of the IDCs would be
improved.

The cost of the overall power consumption of IDC in the
average dispatch is 9716.2 $ and in the optimum dispatch method
without considering the battery is equal to 6830.36 $ and with
considering the battery is 6337.45 $. Respectively, the electricity
cost in optimum dispatch with energy buffering has decreased
%34.77 and %7.22 compared to the average dispatch and optimum
dispatch.

As another critical factor, the battery price affects the energy
buffering scheme. The battery charge and discharge scheme are
significantly changed by changing the battery price. To demon-
strate this issue, different battery prices are considered for the
batteries installed in Mountain View and Houston IDCs, which are
72000 $ and 48000 $, respectively. The energy level of batteries
in Mountain View and Houston IDCs are as follows in Fig. 20. As
can be seen in this figure, due to the high price of the battery,
the utilization of the entire battery capacity in energy buffer
operation is not economical. For instance, in Mountain View’s IDC,
the battery is charged only for three hours; In other words, about
%38 of the battery capacity is only used in the buffering operation.
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Fig. 16. The buffering operation for the batteries installed for the IDCs at Mountain View at the operation period.
Fig. 17. The buffering operation for the batteries installed for the IDCs at Houston at the operation period.
Fig. 18. The power level of batteries installed for IDCs located in Mountain View and Houston at the operation period.
In Table 4, the system actions are shown at two different
ours. At 1 A.M., Houston’s electricity cost is cheaper than to
ther regions. Therefore, transferring the workload to the IDCs
n this area is prioritized. The workload of front-end web portal
642
servers 2 and 3 are transferred to IDCs at Houston. Then, front-
end web portal servers 1 and 4 transfer the workload to IDCs
Mountain, which is cheaper than Atlanta. At this time, QoS is
met. Also, the battery used in Houston’s IDCs is charged during
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Fig. 19. Total hourly total electricity cost in three different dispatching methods.
Fig. 20. The power level of the batteries after considering different battery prices.
his time because the cost of electricity is cheap. At 1 P.M.,
ransferring the workload to Mountain’s IDCs is prioritized; But
nly the front-end web portal server 1 transfers its requests to
hese IDCs because other requests transmission does not meet
oS constraints. Therefore, servers 3 and 4 transfer workload to
ouston’s IDCs because the electricity price in Houston is lower
han in Atlanta. At this time, the transmission of requests in the
DCs located in Atlanta, despite its high electricity cost, is more
conomical than the transmission of requests in the IDCs located
n Mountain View. The battery in Houston’s IDCs gets discharged
o supply part of the power consumption of IDCs and decreases
he total energy cost.

. Conclusion

The high power consumption of IDCs, especially during peak
ours, in addition to the economic losses, increases the risk of
ower outages and has become a critical concern for ISPs. In this
aper, a novel scheme for energy cost optimization is presented

o reduce the total cost of an ISP by optimal workload dispatch

643
Table 4
The analyze result for two hours.
J t Mi uj(t) qj(t) Copt Cave C ∆C

1 1 30031 0 0
2 1 0 – – 222 364 262 %28
3 1 40000 3e6 0

1 13 20007 0 0
2 13 20107 – – 461 485 393 %19
3 13 40000 0 3e6

between IDCs and battery energy management. To make the work
comprehensive, the literature gap in this context is identified
and addressed. The main gaps in the field, in addition to the
lack of works covering the three main possible measures for
energy cost minimization (i.e., optimal internal system, optimal
workload distribution, and energy buffering), include:

• The complexity of the nonlinear optimization problem
framework in the previous studies.
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• Neglecting the effects of depth of discharge on charge and
discharge patterns of batteries.

• Neglecting the impact of cross-correlations between the
IDCs’ traffic.

To address these all, a copula-based multidimensional correla-
tion analysis method has been used to model the multivariate
correlations between IDCs, as well as, energy buffering has been
considered in the proposed model, and the effect of depth of
discharge has been given in battery price. Therefore, an optimal
balance has been created between energy cost saving and battery
cost. Moreover, a penalty term has been added to the objective
function to prevent non-compliance with the QoS conditions, and
the effect of the penalty rate has been shown and investigated on
the workload distribution scheme. At first, the proposed problem
has been presented as an NLP, and then it has been converted
to a MILP framework with linearization techniques and solved
by the BARON solver in GAMS software. Finally, the results have
demonstrated that the proposed method has improved the elec-
tricity consumption pattern, furthermore, proved the importance
of the depth of discharge to reach a more economical and opera-
tional solution. Moreover, the results have presented how energy
buffering can affect distributing the workload and maximize the
ISP’s profit in a competitive energy market.
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