
  

 

Abstract— The Human Efficiency Evaluator (HEE) is a 

model-based tool that predicts car drivers’ visual attention 

based on a variant of the SEEV model. Different to prior 

research that required individual human factor (HF) expertise 

to generate valid attention predictions, the HEE enables to 

collect data from a group of experienced car drivers, to 

simulate human monitoring behavior, and to end up with valid 

predictions. We invited two different groups: automotive 

human factors experts (n=9) and experienced car drivers 

(n=20) to predict car drivers’ monitoring behavior for a 

highway overtaking scenario with the HEE. Previous research 

did not detail the amount and experience of the HF experts 

involved in generating predictions, whereas our study revealed 

a quite high variance of individual HF experts’ predictions 

about drivers’ typical monitoring behavior. We measured car 

drivers’ monitoring behavior using an eye tracking device in a 

car driving simulator (n=20). The aggregated prediction of the 

group of car drivers was high (R=0.719) and better than the 

average prediction of an individual HF experts. 

I. INTRODUCTION 

A very common approach to the analysis of car drivers’ 
visual attention is to use eye tracking devices to observe them 
while driving. Such studies offer empirical data, but come 
with major drawbacks. First, they require a complex study 
setup in that the machine interface (e.g. an automotive 
assistance system) and its environment (e.g. the driving 
situation) need to be realistically simulated to produce valid 
data. Second, to attain a representative monitoring behavior, 
a reasonable amount of subjects need to be observed with an 
eye-tracker in a driving simulation. Effort increases with the 
number of subjects, because, subjects are tested successively 
and huge effort needs to be spent on data analysis thereafter 
(e.g. matching the eye tracking data of each driver to the 
dynamic traffic situation). Finally, the empirically collected 
data reflects the observed monitoring behavior but misses’ 
reasons that explain what actually caused the observed 
behavior. 
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Model-based attention prediction approaches have been 
proposed to better understand human behavior but can also 
complement eye-tracking studies. They are especially helpful 
in early HMI design phases where only design sketches but 
no prototypes are available. By simulating human behavior 
based on psychological and physiological plausible models 
they can actually be used to predict human behavior such as 
interface monitoring, which has been already reported in the 
past for several application domains [1, 2, 3]. 

Predictive attention models, like e.g. the SEEV (Salience, 
Effort, Expectancy, Value) model [4] or the application of the 
analytic hierarchy process by Ha & Seong [3] are promising 
approaches to actually identify and describe the parameters 
that influence car drivers’ monitoring behavior. Though, the 
validity of the input parameters that describe a car driver’s 
monitoring behavior is an open issue. To the best of our 
knowledge visual attention prediction models have been only 
elaborated by human factors (HF) experts with extensive 
modelling experience and a strong expertise in the domain. 
These experts are rare. If such a model is created by just one 
expert, errors made by the expert can have a huge impact on 
the predictions. Thus building a model has to be done very 
thoroughly and is expensive in time and expertise. Our 
objective is to ease modelling, so that it doesn't require 
advanced knowledge of cognitive scientists or HF experts.  

Therefore, we present the Human Efficiency Evaluator 
(HEE), a model-based attention prediction tool that combines 
model-based and empirical methods in a structured process. 
It eases the modelling process and enables domain experts 
with no background in human factors to model drivers’ 
monitoring behavior. The HEE structures the modelling 
process in such a way that models of multiple domain experts 
can be combined to effectively reduce the impact of 
individual modelling errors and captures expert knowledge in 
a reproducible way. The attention predictions with the HEE 
are generated based on an adapted SEEV model.  

We invited HF experts (without prior SEEV model 
experience) and domain experts (experienced car drivers) to 
model car drivers’ visual attention for an overtaking 
maneuver. To validate the model predictions, we performed 
trials in a car driving simulator with eye tracking hardware to 
measure the actual monitoring behavior for the same highway 
overtaking scenario that we asked the subjects to model with 
the HEE. We focus on the following research hypothesis: 

H1: “Aggregating multiple domain expert models ends up 
in better attention prediction results than those that can be 
gained by an average individual human factors expert.” 
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In the following, we discuss related work on models for 
predicting human attention and summarize the experiment 
and validation setups. We focus on the SEEV model and 
variants, which seem to be the most popular models based on 
the amount of publications that we have found. Thereafter, 
we give an overview about the HEE tool and its underlying 
knowledge capturing process, before we detail our study 
setups and report about our findings 

II. ATTENTION PREDICTION MODELS 

The vision of human modeling is to provide methods, 
techniques and tools to generate predictions of human 
performance. The SEEV model of attention allocation [4] 
provides such a promising theory. It describes that “the 
allocation of attention in dynamic environments is driven by 
bottom up attention capture of salient events, which are 
inhibited by the effort required to move attention, and also 
driven by the expectancy of seeing valuable events” [5]. 

The SEEV model is used to predict the percentage of 
time, that someone spends looking at an area of interest 
(AOI). It is typically applied by HF experts that have a deep 
understanding of human attentional processes. The SEEV 
model relates the probability PS of attending a specific AOI 𝑠 
to four factors: 

PS = Saliency – Effort + Expectancy ∙ Task Value  (1) 

Saliency and Effort are bottom-up factors that describe the 
saliency of information displayed by an AOI and the effort it 
takes to obtain the information, e.g., by moving eyes and 
head or navigating through a menu. Expectancy and Task 
Value are top-down factors. They describe how often new 
information can be expected from an IS and how valuable the 
information is for accomplishing the tasks of the human 
operator. 

MIDAS [6] for instance is a system developed by NASA 
since 1985 that integrates the SEEV model. The saliency (e.g. 
contrast), expectancy (i.e. how often new information is 
expected?), and value (i.e. how valuable is the information?) 
coefficients are assigned using HF expert ratings [7]. The 
effort coefficients (e.g. head or eye movements) are 
calculated automatically based on the distances between the 
different AOIs. The SEEV model was also integrated  in the 
Attention-Situation Awareness (A-SA) Model, that has been 
used to predict optimal scanning paths in landing operations 
of an airplane. System data determines the expectancy and 
regulation data defines the value of areas of interest, which 
have been previously identified using eye-tracking data. 
“Based on the parameters of effort, expectancy and value [the 
model] accounted for roughly 30%-80% of the variance in 
scanning data seen in human data.” [8]. 

Over the last decade, such SEEV model variants have 
been used to model and predict attention allocations for a 
wide variety of tasks: To evaluate drivers’ monitoring 
behavior while approaching intersections [9] or to evaluate 
the influence of secondary tasks [10, 11], for landing an 
airplane [8],  to analyze the influence of specific cockpit 
instruments [12], or to analyze the allocation of attention of 
nurses assisting in medical interventions in a hospital [13]. 

All these studies report moderate up to very high 
correlations (0.6< R <0.97) between eye tracking studies and 
the model predictions. But the number of AOIs and therefore 
the amount of data points in these studies is quite low, which 
was also noted by the authors themselves, e.g. in [11], and 
“may have artificially inflated the model fit” [11]. The AOIs 
that were distinguished for attention distribution varied 
between 2 up to 6 per experiment, with the majority 
modeling and calculating predictions for attention allocations 
of 3-4 AOIs. 

 For nearly all of the studies prior experience of the 
involved experts was not stated (i.e. expert knowledge, e.g. 
gained by earlier observations of operators in similar 
situations, or prior eye tracking studies). Most studies rely on 
explicit methods and techniques like e.g. [14], which uses 
matrixes and the “least integer ordinal value” heuristic, to end 
up with parameter values in an ordinal metric use or the 
“analytic hierarchy process” for quantifying the informational 
importance [3]. The input data validity often cannot be 
reproduced easily. Most studies state all the relevant concrete 
parameter values. This allows to reproduce their predictions, 
but the prior determination of the parameter values rely 
considerable on individual expert’s expertise. Interestingly, 
only one study we found [13] reported insights about the 
amount of experts, their background and prior knowledge, 
and the method applied to determine and agree on the 
concrete model input parameter values. 

There are individual human factors experts with a very 
high expertise, such as for instance Wickens et al. that 
continuously published over a decade high correlating 
predictions in the aeronautics domain [15].  To which extend 
Human Factors or SEEV model expertise is required for good 
predictions and how well experts do concord in their 
parameter determination has not been researched so far to the 
best of our knowledge. Research about model-based 
prediction benefits from empirically reproducible input 
parameter determination process and from investigating in 
the expertise required to end up with good and reproducible 
predictions. 

In the subsequent section we describe the Human 
Efficiency Evaluator (HEE). The HEE is a software tool that 
we developed to support predictive cognitive modelling in a 
reproducible way. Some tools already support cognitive 
model creation. CogTool [10] for instance supports the 
generation of ACT-R [1] models with deterministic 
sequences of actions. These models are based on GOMS and 
KLM and are targeted on evaluating Windows-, Icons, 
Menus, and Pointer (WIMP) user interfaces. The Distract-R 
system by Salvucci [16] is also based on ACT-R. It allows to 
create ACT-R models of in-vehicle, secondary task 
interactions in a way similar to CogTool. It integrates these 
models with a detailed driver model to simulate and predict 
effects of secondary task distraction on driving behavior. 
COGENT [17] is a graphical modeling editor for 
psychologists that allows “programming” cognitive models at 
a higher level of abstraction. It is based on box and arrow 
diagrams that link to a set of standard types of cognitive 
modules, which implement theoretical constructs from 
psychological theory. COGENT, CogTool, Distract-R and 
HEE share the idea of making cognitive modeling easier by 



  

allowing programming on a higher level of abstraction. 
Whereas COGENT focuses on psychologists and extensive 
training, the HEE, CogTool and (to a lesser extent) Distract-
R do not require any specific expertise to generate cognitive 
models and can therefore be used by non-experts in cognitive 
modeling as well. 

The following section introduces the HEE and explains 
the parameter estimation steps incorporated in the tool for 
generating attention predictions. 

III. THE HUMAN EFFICIENCY EVALUATOR ( HEE) 

For testing our hypotheses, we developed the Human 
Efficiency Evaluator (HEE), which we use to generate 
attention models based on the top-down parameters of the 
SEEV model. For the identification of expectancy and value 
parameters it implements the lowest ordinal heuristic [8], 
which is the most common applied process for determining 
the parameter inputs. The HEE has been carefully designed to 
be usable even by people without any knowledge in HF or 
attention prediction modeling. We eliminated any influence 
of non-reproducible teaching for using the HEE. Therefore 
we produced a 12 minutes long introduction video that was 
the only information source that all subjects in our studies 
had available to learn about the HEE. The video explained 
the tool based on evaluating monitoring behavior in a soccer 
game. 

Fig. 1 depicts the entire modelling process. It starts by 
determining the model parameters (steps 1-4), thereafter the 
tool generates and executes the prediction model simulation, 
and finally the prediction results are visualized by the tool. 
The HEE requires photos of HMI monitoring situations that 
vary either in design (e.g. different cruise control assistant 
systems) or in the reflected point in time (which we call a 
“situation”: e.g. an overtaking scenario separated into three 
consecutive situations: change lane, pass, return to own lane, 
together with a set of textually defined driver tasks (e.g. 
“respect speed limits”, “overtake slower cars”) as input. 

The tool supported manual process steps produce input 
parameter data (expectancy and value for each identified 
AOI) that are feed into the automated model generation of the 
tool. Actually, two different types of models are generated: 
an environment model that defines the physical locations of 
the AOIs and an operator model that simulates a human’s 
behavior of monitoring an HMI (moving the attention from 
one to another AOI based on the probability calculated by the 
SEEV model and based on the input parameter data). The 
result of a Monte-Carlo simulation of such a non-
deterministic model is an attention allocation prediction that 

the HEE presents either as a heat map or by charts or tables 
stating the percentage dwell times for each AOI. 

For the experiments we were also interested in aggregated 
predictions of a set of experts. For aggregating individual 
predictions we were required to extend the tooling because 
individual experts end up with different AOIs identified, 
labeled and positioned. We classified each AOI into AOI 
classes to enable model comparison across individual experts. 

Finally, special cases like e.g. overlapping of different 
AOIs or different levels of details in experts’ AOIs (i.e. an 
AOI marked by one experts is marked by another expert in a 
more detailed way using several smaller AOIs) needs to be 
considered. On these aspects we will elaborate later on in 
greater detail. Thereafter, aggregated predictions can be 
calculated. 

The HEE guides its users through four steps: (1) the 
identification of AOIs, which are regions on an image of a 
monitoring situation that communicate a piece of information 
to the user; (2) the definition of the task importance of each 
user task, (3) the expectancy of an AOI that describes how 
often new information can be expected; and (4) the definition 
of the relevance of each AOI for each task. After having 
these data collected, the prediction model can be generated 
(5). The following subsections detail the techniques applied 
to collect these data from the experts. 

A.  Identification of Areas of Interest (AOIs) 

For each design variant, which is in our case represented 
by a photo, the expert is asked to identify and name all 
sources of information and their corresponding physical 
location and dimension as precise as possible. This is done by 
sketching rectangular areas on each photo representing one 
design. Fig. 2 depicts a screenshot of the AOI identification 
step for an overtaking scenario with several AOIs already 

 
Figure 1. Activities to be performed manually (expert actions) or automatically for predicting attention allocations.  

 
Figure 2. Identification of AOIs within the HEE. The user interface of 

CogTool [18] was re-used and extended for this step. 
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identified, e.g. the right mirror, the left lane and the 
speedometer. 

B.  Expectancy Definition 

Fig. 3 depicts the screen for defining the expectancy. The 
subsequent expert action steps are implemented by tabs in the 
bottom bar. The left side of the window alphabetically lists 
all identified AOIs together with the corresponding 
monitoring situation in which the AOI has been identified. 
The user needs to roughly order these AOIs by dragging them 
into the list in the middle: AOIs with an expectancy of 
providing frequently new information are ranked towards the 
top and those with fewer expected new events towards the 
bottom of the list. Not all AOIs need to be ranked and no 
total order needs to be identified. The tool automatically 
constructs a mathematical relation that reflects the created 
order by relational statements in the list on the right of Fig. 3. 
Further relations can manually be added for situations in that 
a complete order of AOIs cannot be identified (e.g. by 
defining AOIa>AOIb and AOIa>AOIc but being unsure about 
the relation between AOIb and AOIc).  

C. Task Importance 

Monitoring is usually done to collect information relevant 
for a set of tasks that a car driver has to perform. These tasks 
are specified at the beginning of the process (e.g. in our 
experiment: “Keep your car safely on track”, “Respect the 
speed limits”, and “Overtake slower vehicles”) and differ in 
their importance and therefore affect the monitoring behavior 
differently. The rating of the task importance is implemented 
similarly to the initial expectancy rating step: by asking the 
experts to rank the list of operator tasks based on their 
importance. 

D. AOI Relevance 

The value of each AOI depends on the relevance of an 
AOI for performing a task and the importance of the task 
itself [9]. The latter already has been identified by the 
preceding task importance definition step. The former is 
identified by filling out a relevance matrix, which is the last 
step of the guided process. A screenshot of such a relevance 
matrix form is depicted in Fig. 4. The matrix lists all AOIs as 
rows and all user tasks as columns. The experts are requested 
to identify each AOI for every user task either as “necessary” 
(=1), “helpful” (=0.5) or “not relevant” (=0). 

E. Model Generation 

From the expectancy relation and the task importance 
relation two partial ordered graphs are generated 
automatically. By ranking these graphs using the lowest 
ordinal algorithm [11] the tool calculates an expectancy 
coefficient for each AOI and an importance coefficient for 
each task. Task importance coefficients are multiplied with 
the relevance matrix as shown in [11] to obtain value 
coefficients for each AOI. These coefficients are the 
foundation for generating monitoring behavior models of 
humans’ attention shifts between different AOIs. It will 
constantly switch between the AOIs to move visual attention 
between them, based on the probability calculated with the 
expectancy and value coefficients [19]. 

The HEE uses the CASCaS (Cognitive Architecture for 
Safety Critical Task Simulation) architecture [11] to simulate 
human behavior. An integral part of CASCaS is an adapted 
SEEV model, which solely relies on the model’s top-down 
factors and assigns an expectancy coefficient 𝑢𝑔 and a value 

coefficient 𝑣𝑔 to each goal 𝑔 of a cognitive model executed in 

CASCaS. A cognitive architecture like CASCaS can be 
understood as a generic interpreter that executes formalized 
procedures of a human operator in a psychological plausible 
way. An overview of cognitive computational models like 
ACT-R, SOAR, MIDAS and others is provided for instance 
in [19]. 

Monitoring involves detecting and reacting to events and is 

composed of a set of monitoring goals. To execute such a 

goal the human operator looks to the IS that can signal the 

event. Upon event detection the operator utilizes the 

perceived information to react to this event.  If no event is 

detected, the operator’s attention shifts to another 

monitoring goal probabilistically based on the expectancy 

and value coefficients. The probability of switching to goal 

𝑔 among a set 𝐺 of monitoring goals is defined as (cf. [20]): 

𝑃(𝑔) =
𝑢𝑔

∑ 𝑢𝑔𝑖𝑔𝑖∈𝐺
∙  

𝑣𝑔

∑ 𝑣𝑔𝑖𝑔𝑖∈𝐺
 (2) 

For monitoring simulations the HEE generates a 
probabilistic sequence of actions. Based on CASCaS and the 
integrated SEEV model, Monte Carlo simulations predict 
average percentage AOI dwell times and gaze frequencies, 
which can be visualized e.g. by heat maps. 

 
Figure 4. Relevance matrix form of the HEE. 

 
Figure 3. Expectancy definition form of the HEE. 



  

IV. METHODOLOGY 

To test our hypotheses we chose an automotive 
overtaking scenario on a two lane motorway. We created an 
HEE project that contains three consecutive situations of an 
overtaking maneuver. For each phase a representative image 
was selected (Fig. 5):  

1. Moving to the left lane after approaching a slower 

vehicle (LM) 

2. Overtaking the slower vehicle on the left lane (OT) 

3. Moving back to the right lane in front of the slower 

vehicle (RM) 

The experiment was performed with two different groups 
of subjects: On the one hand with experienced car drivers and 
on the other hand with HF experts in the automotive domain. 
None of all subjects had ever used the HEE or the SEEV 
model before. 

A public announcement was made in the university to 
recruit 20 licensed car-drivers who were required to be 
licensed for at least 3 years, have a minimum driving 
experience of 2000 km per year and received an expense 
allowance of 10 EUR/h. The subjects were aged between 21-
57 years (median: 23), were licensed between 4-39 years 
(median: 6), with a driving experience between 2000-40000 
km per year (median: 5000). 11 woman and 9 men 
participated in the study, with the majority of them having a 
background in social sciences, and the minority (7) in natural 
sciences, mostly in chemistry and biology. None of them had 
a background in HF, psychology or computer science - one 
had a degree in neuroscience.  

To compare the modeling quality of the experienced car 
drivers (ECD) (our non-Human Factors experts) with the 

modeling quality of Human Factors experts (HFE), we 
also let 9 HFEs from the automotive domain perform the 
exactly same experiment part of modeling the overtaking 
scenario (3 from a large automotive supplier, 3 from a 
national transportation research institute, 3 from an academic 

research institute working in human modelling). We required 
all HFEs to have in depth knowledge of car drivers (they all 
had experience in performing experiments with car drivers in 
car simulators for several years).  

A. Procedure 

The ECDs were invited on two different days: At one day 
they were asked to generate models of their own monitoring 
behavior for the overtaking scenario and at a second day they 
were invited for driving the overtaking scenario in a car 
driving simulator. The order of modeling and driving was 
randomized and balanced. Between both days there was a 
break of between 5-10 days. HFEs were invited on just one 
day to generate models of typical driver behavior. They did 
not drive the scenario in the driving simulator. 

1) Modelling 
The modeling was performed for the ECDs in a total of 5 

and for the HFEs in 3 sessions (around 1 h per session) of 3-5 
participants modeling in parallel, each one by its own on a 
separate computer. One participant of the ECD group failed 
to create a valid HEE model (just one AOI was identified) 
and was excluded. All subjects were only instructed by a 15 
minute tutorial video1. For all subjects in both groups the 
total modeling time (after watching the video till the 
prediction model has been finalized) was under one hour. 

2) Car Driving Simulator 
On another day the ECDs drove in a fixed based driving 

simulator with a 170° field of view, running the SILAB 
simulation software. First, participants received a short 
simulator training. Afterwards they were instructed to drive 
for 20 minutes on a two lane motorway with low to medium 
traffic and keep a target speed of 130km/h and overtake 
slower vehicles as necessary. All in all 257 overtaking 
maneuvers were recorded in the simulator study. Subjects’ 
gaze behavior was recorded using a Dikablis eyetracking 
system.  

 
1 http://lnk.multi-access.de/iv17  last checked 30/01/17 

 

 

 
Figure 5. Photos used for modeling the overtaking: Left Merging (LM), Overtaking (OT) and Right Merge (RM) 

http://lnk.multi-access.de/iv17


  

A. Data Processing and Analysis 

The data processing chain that we implemented considers, 

among others, the following aspects:  

1) Coordinate Transformation 
In order to compare the HEE models with actual gaze 

movements, the coordinates of the AOIs marked using the 
HEE needs to be mapped to the eye-tracking data. With the 
Dikablis eye-tracking software AOIs can be defined relative 
to visual markers placed in the driving simulator. As the 
driving simulator is a 3D-setup, we placed markers on two 
layers: (1) within the vehicle cabin and (2) on the forward 
view projection screen. We calculated the positions of all 
markers on the 2D HEE background images and created 
corresponding transformation functions. Using the 
transformation functions, AOIs defined on the HEE 
background images can automatically be transformed to 
AOIs for the analysis software of the eye-tracker. The 
transformed AOIs, which are mainly marked within the 
vehicle cabin, were only defined relative to the markers on 
the cabin layer, while AOIs that are mainly defined on the 
forward view are only defined relative to the markers of the 
projection screen layer. 

2) Measurement for the Separation of Driving Phases 
In order to compare the attention predictions for the three 

driving phases with eyetracking data, the eyetracking data 
recorded during the driving simulator sessions needs to be 
separated into the three driving phases. A naïve approach in 
separating the driving phases would be to define e.g. a fixed 
time (e.g. time to collision) or distance to the vehicle driving 
ahead to separate phases. But such a measure needs to be 
chosen very carefully, as it might have an impact on the 
calculated attention allocation for each phase. The ideal 
measurement would be separating the phases based on the 
change of the driver’s intention to merge left, overtake and 
merge back right. To not interfere with the driving task, we 
decided against asking the subjects of performing an 
additional task to communicate intention changes e.g. 
pressing a button.  

Instead, we selected the driving phases based on the time 
of lane changes. The left merge phase (LM) starts 4 s before 
the vehicle center crosses the road marking and ends 0.5 s 
afterwards. In the same way starts the right merge phase 
(RM) 4 s before the vehicle returns to the left lane and ends 
0.5 seconds after crossing the road marking. In between is the 
overtaking phase (OT). Thus the LM and RM phase are 

always 4.5 s long while the duration of the OT phase varies. 
These times were chosen based on our expertise. We 
conducted a sensitivity analysis later on to analyze the impact 
of the driving phase definition. We tested different timing 
definitions, using start times for the LM and RM phases 
ranging from 2 s to 6 s before crossing the road marking and 
end times ranging from 0 s to 1 s after crossing the road 
marking. None of the definitions had a great impact on the 
result. 

3) AOI Classification 
The tooling with the HEE allowed each expert to define 

an individual set of AOIs and label each of those based on 
individual preferences. For model comparison of different 
models a reliable AOI classification process is needed. 

We clustered the AOI definitions into AOI classes by 
applying a two phase classification approach using three 
analysts. First, we jointly agreed on a set of 16 AOI classes 
(c.f. Table 1). We implemented an HEE function that 
generates an excel table with the class names as columns and 
for each AOI (ECD: 304 / HFE: 200) a row in a randomized 
order together with one picture for each AOI that showed the 
location on the photo together with the given label. Second, 
all three analysts independently classified the AOIs by 
walking through all of the images and identifying the most 
appropriate class for each AOI in the excel sheet. We ended 
up with a high inter-rater concordance (Fleiss kappa: ECD: 
κ=0.904 / HFE: κ=0.881). 

 

4) PDT Calculation 
The percentage dwell time (PDT) for an AOI was 

calculated as the percentage of time the eye tracker identified 
that a gaze was targeted at an AOI. In some regions AOIs did 
overlap. If the gaze was located at a region of n overlapping 
AOIs for some time, the gaze was equally distributed to the 
AOIs, i.e. the PDT calculation for each of the n AOIs was 
done as if the subject was looking to each of the AOIs for just 
1/n-th of the time duration. 

V. RESULTS 

R1:”Individual, experienced car drivers are bad in 
identifying the regions that they are looking at during an 
overtaking maneuver and also in modelling how they divide 
attention between these regions.” 

ECDs are bad in predicting their own monitoring 
behavior. We took the attention model of each ECD and 
compared it to the corresponding own eye-tracking data of 
the same subject. We used the eye-tracking data to calculate 
the PDT for each AOI defined in the ECD’s attention model. 
Most of the time the ECDs’ gazes were not located at the 
AOIs they defined (75.5% of the time, SD=24.3%). 
Furthermore the distribution of the time, were the gazes 
actually were located on any AOI did only weakly to 
moderately correlate with the PDT predictions of their 
models. Subjects achieved an average correlation coefficient 
of R=0.318 with high individual variance (SD=0.292). 

R2:”Aggregating the models of multiple experienced car 
drivers improves attention prediction results compared to an 
average individual experienced car driver.” 

TABLE I.  THE 16 AOI CLASSES AGREED BETWEEN THE THREE ANALYSTS 

 AOI class  AOI class 

1 Left side mirror 10 Slower truck to overtake 

4 Dashboard speedometer 11 Traffic ahead 

5 Speed limit sign 12 Road directly ahead of ego 

vehicle 

6 Rotation speed indicator 13 Windscreen 

7 Distance to traffic ahead 14 Direction indicator 

8 Left side window 15 Road condition 

9 Right side window 16 Weather 



  

The subjects’ AOI aggregation is done by overlaying all 
AOIs (thus creating their union respectively their entire outer 
frame) for those AOIs with clear boundaries in the same AOI 
class (e.g. all marked left side mirrors) and by combining 
those without (e.g. the windscreen) also by using the outer 
frame of all those AOIs. Fig. 6 depicts one such exemplary 
AOI aggregation for all AOIs identified in the windscreen. 
The predicted PDT of aggregated AOIs is then calculated by 
the mean predicted PDT of all AOIs inside the aggregate AOI 
borders of all subjects. 

For such an aggregated model we end up in a high correlation 
with the observed eye tracking data for which we also 
calculated the mean observed PDT for each AOI aggregation 
(R=0.719) while at the same time the amount of time, where 
the gaze could not be assigned to an AOI was reduced to 
18.9%.  

R3:”Aggregating multiple experienced car drivers AOIs 
and averaging their individual corresponding PDTs ends up 
in better attention prediction results than those that can be 
gained by an average individual human factors experts.” 

The average correlation coefficient of the individual HFE 
experts was only 0.394 (SD=0.259) which is worse than 
predictions of the combined ECD group. Surprisingly, their 
variance was high as well, which seems to indicate that their 
conformance was lower than we expected based on their 
expertise. 

R4:”Aggregating multiple human factors AOIs and 
averaging their corresponding PDTs results in a very high 
correlation compared to the average measured monitoring 
behavior.” 

Combining the models of the HFEs in the same way as it 
was done for the ECDs results in a very high correlation 
coefficient of R=0.967. This shows the impact that averaging 
can have on independently created models with a high 
variance between the averaged individual models.  

VI. DISCUSSION 

For the individual predictions of both groups we observed 
that the majority of gazes (>75% of the time) were not 
located at the AOIs that the individual experts had defined. In 
our understanding this is because of two reasons, which are 
hard to separate based on the data we have recorded:  

First, subjects might actually pay attention to information 
sources that they had not considered in their models.  Second, 
the direct comparison between model prediction and eye 
tracking data is difficult, because the AOIs for the prediction 
models can be defined on a much more detailed level than 

they could be defined to be measured in eye tracking studies 
with current technology. There, AOIs often are defined much 
bigger, because of: (1) the noise in the eye tracking 
measurement, (2) the fact that some information can be 
perceived in the near periphery, e.g. a brake light flashing up, 
and (3) not all AOIs are actually static but slightly change in 
position and size, e.g. a vehicle ahead.   

For our study we applied the multiplicative variant of the 
SEEV model, which connects expectancy and value 
coefficients multiplicatively. This variant should predict 
optimal monitoring behavior. However prior research does 
not agree about, whether humans always monitor in an 
optimal way. In earlier studies it was shown that often an 
additive variant with no interaction between expectancy and 
value yields better predictions [2]. We again conducted a 
sensitivity analysis with respect to the model formulation. 
Using the additive variant never changed any of the average 
correlations by more than 0.097. The combined predictions 
using the additive SEEV variant is R=0.699 for the ECD 
group and R=0.944 for the HFE group.  

The standard error of averaged values that our prediction 
approach depends on can be directly controlled by the 
number of subjects, which is of benefit in safety-critical 
applications where e.g. missing information can affect a 
person’s life and therefore predictions can are required to be 
associated with a certain level of certainty. 

With 16 (grouped condition:7) AOI classes covered by 
the attention prediction based on the best of our knowledge 
our study is one of the most detailed attention predictions 
reported so far. Prior research reported about attention 
predictions of between 3-6 AOIs.  

While analyzing the results, we got aware that the good 
prediction quality of the group of experienced card drivers 
seems to be in line with the Diversity Prediction Theorem 
[21], which basically states, that for a given group of 
predictive models (e.g. the ECD models we collected) the 
average squared error is equal to the average individual error 
minus the variance of individual signals. Under the 
assumption that the models were created independently [22] 
and ended up in reasonable models, large prediction diversity 
reduces the collective error.  

For the HF expert group the collective prediction error of 
a group of nine is very small and almost perfectly correlates 
with the measured attention prediction. Additional the 
prediction regions for that predictions were made, covered 
over 81% of the total gazes recorded. On a first glance this 
high correlation was a huge surprise. But those correlations 
also seem to be in line with the Diversity Prediction Theorem 
as we also observed a high diversity in the HF experts data 
collected via the tool.  

Even it might be unrealistic to always have 9 HF experts 
with a high domain expertise or 20 experts recruited, but we 
consider this results as very promising for several reasons: (1) 
the HEE does not need onsite training and therefore can be 
applied remotely; (2) the effort in time is very low (like 
around one hour in our studies per expert for the first time 
usage of the tool); (3) if upcoming  studies can confirm these 
high-correlations, at least HF experts that are following our 
tool-supported process might be able to completely substitute 

 
Figure 6. AOIs of class “road directly ahead” of phase “lane change” of all 

19 participants  



  

eye-tracking studies to observe attention allocations. This 
will bring predictive models of human performance into 
application, so that they can to guide and constrain user 
interface designs, which was expensive in time and expertise 
before and can play their benefits over eye-tracking: they can 
already be applied in an early design phase where no 
prototypes are available and also can be inspected to give 
insights about the underlying causes for the predicted 
attention allocation. 

VII. CONCLUSION 

With the help of the Human Efficiency Evaluator, that 
eases modelling monitoring behavior, for the first time non-
experts in human factors can generate valid attention 
prediction models. Prior research has shown that individual 
human factors experts are able to predict attention allocations 
based on the SEEV model for several different application 
domains. But what kind of expertise was required for 
generating valid models remained unclear. 

We contributed to this field of research with an approach 
that combines model-based attention prediction and empirical 
methods in a structured process. A group of 19 experienced 
car drivers ended up in a prediction model that accounted for 
52% of the variance of the average measured attention 
allocation of three phases of an overtaking maneuver of 19 
car drivers. A group of 9 HF automotive was able to generate 
a prediction model that accounted for 94% of the variance 
measured. The high correlations are in the line with the 
Diversity Prediction Theorem since data collected by the tool 
had a high diversity.  

Our approach makes several advances: (1) there is no 
prerequisite knowledge required (apart from watching a 15 
minutes video tutorial); (2) The complete prediction 
generation process including the input parameter generation  
is reproducible for the first time, since it is an empirical 
approach eliminating the need of individual HF expertise or 
knowledge; (3) It is very time efficient, since data collection 
just requires the software, and can be performed in parallel 
and remotely, which is especially relevant for niche domains 
where experts are rare and spread around the world. The 
results also showed that the variance of predictions made by 
human factors experts is quite high, which indicates that 
obtaining valid attention predictions from individual experts 
depends essentially on their individual expertise. 
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